AD=A065 447 GENERAL RESEARCH CORP SANTA BARBARA CALIF F/6 9/2 -
FORTRAN AUTOMATED VERIFICATION SYSTEM (FAVS), VOLUME II. USER'S==ETC(U)
JAN 79 D M ANDREWSr R A MELTON F30602=76=C=0436

UNCLASSIFIED RADC=TR=78=268-VOL=2 NL
JIIIIIIIIIIIIIIIIII|IIII||IIIII|IIII|IIIII||IIIII|IIII|IIIIII

-

[
| or 2 —'9

AL .
ADBE44
B M-

e
A
<
g
Ne
-
<
o
=T

— v
e ———

DDC FILE copY

\\
RADC-TR-78-268, Volume Il (of three)
Final Technical Report
Janvary 1979

FORTRAN AUTOMATED VERIFICATION
SYSTEM (FAVS)

User’'s Manual

General Research Corporation $ ‘\0;0
. g o

D. M. Andrews\\
R. A. Melton ‘

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

mg 03 05 041

This report has been reviewed by the RADC Information office (0I) and 1s_f
releassble to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign nations.

RADC-TR-78-268, Vol II of three has been reviewed and is approved for
publication.

e Do A ol

FRANK S. LAMONICA
i Project Engineer

APPROVED: %/JG éz Pl

WENDALL C. BAUMAN, Col, USAF
Chief, Information Sciences Division

, FOR THE COMMANDER: ./ = /= %

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing &
1ist, or if the addressee is no longer employed by your organization, please

notify RADC (ISIE), Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return this copy. Retain or destroy

UNCLASSIFIED 1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE
T REPGORT NUMBER 2 Govr

BEFORE COMPLETING FORM
B IRD ALOG NUMBER
RADC-TR-78-268 Vol II (of three)’ whne. <L

\[. TYP ERIQBLOVERED
M AUTOMATED VERIFICATION SYSTEM (FAVSL_/?jFinaI T’echnical})(e t,

READ INSTRUCTICNS

USER'S MANUALN _ ~ . October 876 - Auguse 2978 .

P = JL_asnsnnuuu;eaa.nsnouizz:;éf::—
N/A 1655

8. CONTRACT OR GRANT NUMBER(s)

@zwgz-m-cﬁbqv

9. PERFORMING ORGANIZATION NAME AND AQDRESS 10. PROGRAM ELEMENT, PRO.ECT TASK

REA & WORK IT NUMBE
General Research Corporation /
P.0. Box 6770
Santa Barbara CA 93111
11. CONTROLLING OFFICE NAME AND ADDRESS
Rome Air Development Center (ISIE)
Griffiss AFB NY 13441

- M. Andrews

138

4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS. (of this report)

Same \/ 7)449 UNCLASSIFIED
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for e; distribution unlimited

17. DISTRIBUTION ST, AENT (of "+ abstract entered in Block 20, if different from Report)
‘/Z"/'-/-,/'.- '/ai‘jéf / 7
TN LG S-NAOL =
1

18. SUPPLEMENTARY TES

Same

RADC Project Engineer: Frank S. Lamonica (ISIE)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Computer Software Automated Verification System
Software Testing
Software Verification
Sof tware Documentation
FAVS

ABSTRACT (Continue on reverse side If necessary and identify by block number)

FAVS, for FORTRAN Automated Verification System, is a tool for analyzing
source programs written in FORTRAN or DMATRAN. It is essentially a software
system to be used as an aid in improving, documenting, and validating the
quality of software and software testing by providing for: XY syntax and
structural analysis of the user's source program, €¢2) static analysis to detect
inconsistencies in program structure or in the use of variables, €3y automated
documentation, (4f instrumentation of the source code, (5)* analysis of test-
ing coverage, and 2] retesting guidance. A separate function that FAVS CBH~—->LA¢*df'/

DD , 5385 1473 % (2 7§§/ UNCLASSIFIED
{ 9 ¢ sECUR”’Y CLASSIFICATION OF THIS PAGE (When Dsta Entered)
Vo o U4l

it AT ARG RS B il B e e

il

UNCLASSIFIED
\ SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

§perform is the transformation of an unstructured FORTRAN program into a logically
equivalent DMATRAN program.

This manual describes how to use FAVS from the beginning of the software
development cycle to its completion.

FAVS has been installed on the HIS 6180 GCOS and MULTICS computer systems
at the Rome Air Development Center, Griffiss AFB, and on the UNIVAC 1100/42
computer systems at the Defense Mapping Agency Aerospace Center (DMAAC) in
St. Louis, MO, and the Defense Mapping Agency Topographic Center (DMATC) in
Washington DC.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

a G 4 < P o wrr—es - i
E ' «g a&é > - Sofreal ZARSEAEH
J e . — . e D PSSR LT

CONTENTS
E.,
E SECTION PAGE
1 INTRODUCTION 1-1
2 FAVS OVERVIEW 2-1
, % 3 FAVS COMMANDS 3-1
; 3.1 RESTART and EXPAND 3-3
3.2 LANGUAGE 3-3
3.3 FILE 3-4
3.4 OPTION 3-4
; 3.5 FOR MODULES 3-5
k 4 OPTION DESCRIPTIONS 4-1
4.1 LIST 4-3
4.2 SUMMARY 4-5
4.3 DOCUMENT 4-10
4.4 STATIC 4-16
: 4.5 INSTRUMENT 4-20
' 4.6 INPUT/OUTPUT 4-24
4.7 REACHING SET 4-26
E | 4.8 RESTRUCTURE 4-28
P ‘ ; 5 FAVS CONSTRAINTS 5-1
(5.1 Universal Constraints =1
: 5.2 Syntax Constraints 5-2
5.3 DOCUMENT Constraints 5-2
5.4 SUMMARY Constraints 5-2
5.5 INSTRUMENT Constraints 5-3
5.6 REACHING SET Constraints 5-3 !
5.7 RESTRUCTURE Constraints 5-3 s
6 ANALYZER COMMANDS 6-1 ;
’ 6.1 SUMMARY 6-4
: 6.2 NOTHIT 6-7
F 6.3 DETAILED 6-9

]

|

CONTENTS (Cont.)

SECTION PAGE
APPENDIX A FAVS SEGMENT COMMANDS A-1
A.l1 Library Commands A-4

A.2 Startup Commands A-4

A.3 Process Option Commands A-5

A.4 Module Selection Commands A-5

A.5 Process Execution Commands A-6

A.6 Standard Print Commands A-7

A.7 Run Termination Command A-7

A.8 Order and Use of the SEGMENT Commands A-7

APPENDIX B DETAILED DESCRIPTION OF FAVS SEGMENT COMMANDS B-1
APPENDIX C COMMAND SUMMARY AND CHECKLIST Cc-1
APPENDIX D FILE DESCRIPTIONS D-1
A APPENDIX E JOB STREAMS FOR FAVS AT DMA & RADC INSTALLATIONS E-1
INDEX I-1

e

e

| ILLUSTRATIONS 1
L 3 NO. PAGE §
t ; 1.1 FAVS Capabilities 1-2
; f 2.2 Software Analysis and Testing Augménted by FAVS 2-1
i £ 2,2 Sequence of Source Program Analysis and Testing 2-3
1 2.3 Library Dependence Matrix 2-4
; 2.4 Report Index 2-5
‘, 3.1 FAVS Analysis 3-1
| 4.1 Statement Listing 4-4
f 4.2 Report Index 4-5
4.3 Statement Profile 4-7
i : 4.4 Library Dependence Matrix 4-8
' 4.5 Commons Matrix 4-9 ;
; 4.6 Invocation Space 4-11 :
F 4.7 Invocaticn Bands 4-12
é 4.8 READ Statements 4=13
; 4.9 Cross Reference 4-14
4.10 Commons Matrix (Enhanced) 4-15 3
4.11 Statement Listings 4-18
4.12 Static Analysis 4-19
a 4.13 FAVS Instrumentation 4-20
3 4.14 DD-Path Definitions 4-23
i 4.15 Reaching Set 4-27
4.16 From FORTRAN to DMATRAN 4-28 "
' 4.17 Statement Listing in FORTRAN 4-31
| 4.18 Restructured Module in DMATRAN 4-32 |
6.1 Execution Coverage Sequence 6~2
6.2 DD-Path Summary (with the Immediately Preceding
. Test Case) 6-5 i
‘ 6.3 Multiple Test DD-Path Summary 6-6 !
F 6.4 DD-Paths Not Executed 6-8 :
r 6.5 Single Test DD-Path Execution 6-10
6.6 Cumulative DD-Path Execution 6-11

Y T e e

g

1 INTRODUCTION

FAVS (for FORTRAN Automated Verification System) is a tool to pro-
vide assistance in the various phases of software system development.
It can be helpful from the very early stages of implementation, through
system integration, testing, documentation and maintenance. As the soft-
ware is being developed, one or more of its modules may be submitted to
FAVS for a static analysis which will help detect errors or conditions
which indicate the possibility of errors. The automated program docu-
mentation FAVS provides supplies a wide variety of reports that show

inter- and intra-module relationships in clear, comprehensible form.

When a program is ready for testing, FAVS offers assistance before,
during, and after execution. In preparation for testing, FAVS can instru-
ment the system by automatically inserting software probes at appropriate
points in the program to measure testing coverage. During an execution
test these probes record information which is used to generate execution
coverage analysis reports. These reports pinpoint paths in the program
structure that remain to be exercised. In addition, retesting assistance
is provided for generating testcases to the untested portions of the
program. During the testing process, FAVS can be thought of as a partner,
supplying a wide variety of autcmated aids to comprehensive testing

activities.

A completely separate function that FAVS can perform is to trans-
form an unstructured FORTRAN program into a structured DMATRAN program
that is logically equivalent. The DMATRAN User's Guide, General Re-

search Corporation CR-1-673/1 describes the features of this structured

FORTRAN language. Figure 1.1 shows all the various capabilities of FAVS.

This manual describes how to use FAVS as an aid from the beginning
to the englof the,software development cycle. Information is presented
in the order that the user is expected to need it. Section 2 is an

overview of the type of aid FAVS provides. Section 3 explains what the

e s

RESTRUCTURE

FORTRAN °
PROGRAMS a
i
STATIC RETESTING 3
ANALYSIS ASSISTANCE
FAVS
DOCUMENTATION TEST EXECUTION
REPORTS COVERAGE REPORTS
MODULE
INSTRUMENTAT ION
FOR EXECUTION
TESTING

Figure 1.1. FAVS Capabilities

user has to do to use FAVS, as wellas what he has to know about the

details of FAVS in order to use it most effectively.

Considerable effort was expended in the design of the FAVS system
to make it as easy as possible to use. The user can designate FAVS to
perform a wide variety of analysis and processing by listing one or more
of eight option selections. Section 4 contains a description of each
FAVS option and an example of each of the reports generated by the option.
Possible pitfalls due to system constraints have been categorized and

itemized in Sec. 5.

When the user's program has been instrumented by FAVS and is ready

for testing, a special set of ANALYZER commands are needed to generate

the execution coverage analysis reports. These coverage commands are

described in Sec. 6.

B 4. e

i
A

Although it is expected that the majority of the users of FAVS
will prefer specifying the processing they want by selecting from the
list of options described in Sec. 4, an introductory description of each
of the FAVS segment commands (i.e., those which drive each separate
function) is presented in Sec. A.1 of Appendix A for the user who would
like to use individual commands. Appendix B contains a detailed de-
scription, in alphabetical order, of each segment command; sample output

is included when it is generated by the command.

Appendix C contains (1) a summary of the FAVS commands, (2) a
checklist for referral when using FAVS options, and (3) a summary of
ANALYZER Commands. Tables listing the files used in FAVS processing at
RADC and DMA installations are in Appendix D. Job streams for each in-

stallation are in Appendix E.

1-3

FAVS OVERVIEW

This section contains an overview of the way in which FAVS can aid

the user not only when he is creating the code but also when he is test-
ing and documenting it. The information presented here about what FAVS 1
does is very general; the following sections contain more complete de- '

tails of the full power of FAVS and how to use it.

i ! Figure 2.1 shows how FAVS fits into the software development cycle
1 to augment software analysis and testing. The additional steps are in-
dicated by diagonal lines. The user's source code can be analyzed by
FAVS and the results will be output in reports which help the user de-
cide if the acceptance criteria are being met. FAVS can also instrument
the source code prior to test execution and provide an analysis of the

behavior of the program during testing.

ACCEPTANCE a
CRITERIA >
b S
2
777777771
SOURCE /T s / a TEST
CODE 7}5 ANALYSIS r STER

LA,
INSTRUMENTED
SOURCE CODE

| TEST TEST \\ TEST
| DATA | EXECUTION RESULTS

Figure 2.1. Software Analysis and Testing Augmented by FAVS

Figure 2.2 shows the sequence of source program analysis and test-
ing when FAVS is used as a partner. If a program is written in FORTRAN,
it can be restructured by FAVS into a logically equivalent DMATRAN pro-
gram that will produce the same results when executed. This is a separate
function that FAVS performs. The right side of the figure shows the
usual sequence of events; FAVS analyzes either FORTRAN or DMATRAN source

code and generates reports of the following types:

° LIST, an enhanced listing of each module

® STATIC, static analysis of each module

° DOCUMENT, interface data and relationships of modules

® SUMMARY, introductory information about modules in brief
form

® INSTRUMENT, structural information about each module

° INPUT/OUTPUT, same report as INSTRUMENT

° REACHING SET, assistance in obtaining a more complete

coverage during the next execution

The INSTRUMENT and INPUT/OUTPUT functions prepare the user's program for
execution testing. INPUT and OUTPUT statements which list global vari-
ables can be added to a module and FAVS will automatically generate the
FORTRAN code to output in proper format the values of these variables

at entry to and exit from the module during execution. Utilizing the
knowledge it obtains about the structure of the program, FAVS can in-

strument the user's program by inserting software probes at each path.

When the program is executed, data is recorded on a trace file each
time a path is traversed. Coverage Analysis Reports, which graphically
illustrate path coverage, are generated from the data collected. These
reports enable the user to determine if testing is complete. If it is

not, the reports show the user where to focus his efforts for retesting.

FAVS can make further tests easier by furnishing a Reaching Set Report

e

T

PR B B A [RN AT e T

SEQUENCE OF SOURCE PROGRAM ANALYSIS AND TESTING

fﬁ SOURCE

L

!

RESTRUCTURE

1

1

LIST

STATIC

DOCUMENT

SUMMARY

INSTRUMENT

INPUT/0UTPUT

i |

REACHING
SETS

NO

=

[

EXECUTE

|

COVERAGE
ANALYSIS
(ANALYZER)

YES

Sequence of Source Program Analysis and Testing

AN-49083

T

T T T T G i i T~I-"-l-..'

which lists the code from the untraversed paths. The user can then de-
termine the values that must be assigned to the variables in order to
reach the set of untested statements. The program is executed again and
the procedure is repeated until the user is satisfied that testing is

complete.

An example of one of the twelve different reports that FAVS gen-
erates is shown in Fig. 2.3. This brief, but very useful Library De-
pendence Report shows the interaction of modules. The name of each
module submitted to FAVS for analysis (stored on a data base called the
Library) is listed on’"the left side of the matrix. An "X" in the hori-
zontal line indicates the routines (whose names are written vertically
at the top of the matrix) that are invoked by the module at the left.
The group of modules in the first section at the top, from CONTRL to
STRUCT, are the modules FAVS has analyzed; the second section, from ACT1
to VERBAT are modules that are not resident on the library but are

i

LIBRARY DEPENDENCE

V08820804 3880380844308 S8580000SREISRR0400000080888¢0

s® INVOKEE = . .
L sCCEFKMMPSeAAABEEGGGGGGTIITITIIIKKMNNNNPSV e
L I s00XUEAQUT»CCSGNREEEEECFFGINIVWCLOADEEUPE
. @ SNMALMIVTReTTSSCRNANNTTCSROCITOAVMSwaYRRe
[] s eTTMCPNEFL#12ICEQOAGLVSOADOELTTMSERCLPLY .
] s oR POT wTCs GARRSCAAT S UIEAKPSwEAAAFwAs
. s sL LNY ONT= NN S BRM E PTVLN 1y NBG CTe
L] L]] L ®
] L B L 3 s
¢ INVOKER s . L
BISE84SESESECELTSSERNI4TTCEINRVIB2980303089880088888
s CONTRL == XsXX XX X X X XX e
s CONT s 8 X = .
s EXArPL ¢ = . PY
¢ FULCON s X ¢X X &]
s KEMPTY . L . X .
¢ MAIN X L] L]]
¢ VOVEWC s X s .
¢ PUTFIN . Xe = X X X e
s STRUCT s XX Xes X XXXXX XXXX X X X X X XXe
C88800383088843802¢083080820000088088St0ReBessteROSS

THE FOLLOWING MODULES ARE NOT INVOKED BY ANY MODULE ON THE LIERARY
KAIN

THE FOLLOWING MOCULES DO NOT INVOKE ANY MOODULE ON TWE LIBRARY
EXANPL KEMPTY

Figure 2.3. Library Dependence Matrix

e - - ~ - = e ———

invoked by modules on the library. Below the matrix, MAIN is identified

as the top module in the invocation hierarchy. EXAMPLE and KEMPTY are
the bottom mocules.

At the conclusion of each run FAVS prints a Report Index which
shows the page numbers, module name, and the name of each report gener-
ated for individual modules. Some reports are an overview of all the

modules; these are listed under the multi-module heading. An example of

a Report Index is in Fig. 2.4.

REPORT INUEXeee

PAGE MODULE NAME
MULTI=MQOULE REPCRTS
LIGRARY DEPENOENCE 23
; STATEMENT MATRIX 24
COMMONS MATRIX 2%
KEAC STATLMENTS 26
CROSS REFLKENCE 27
LIBKARY CONTENTS 28
SUBROUTINE EXAMPL (INFO, LENGTH) EXAMPL
STATEMENT LISTING 1
STATIC ANALYSIS 2« 3
i INVGCATION SPACE 4
INVCCATION BAIUS 5
STATEMENT PROFILE '3

SUBROUTINE CALLER (INFO)

CALLER
STATEMENT LISTING 7
STATIC AMALYSIS 8
INVCCATION SPACE 9
INVCCATION BANDS 10
STATEMENT PRGFILE 13
SUBROUTINE CIKCLE (AREA) CIRCLE
STATEMENT LISTING 12
STATIC ANALYSIS 13~ 14
INVCCATION SFACE 15
LWvCCATION BAwUS 16
STATEMENT PROFILE 17
SUBRCUTINE PRNT (AKEA. RACIUS) PRNT
‘ STATEMERT LISTING 18
: STATIC ANALYSIS 19
INVCCATION SPACE 20
INVGCATION BANDS 21
STATEMENT PROFILE 22
1
Figure 2.4. Report Index
‘ s PAGE 15 BEST QUALIT FRACT e
; FROM COBY BV D 19

SRRy TE DTN TR TR

e -

3T — " FEU———————————CTE T N ” NSRRI

THIS PAGE 1S BEST QUALITY PRACTICANIS
FRO0M COPY FURNISHED 10 DDQ ____—

3 FAVS COMMANDS

FAVS is a software system which reads as data the user's FORTRAN

%
or DMATRAN source text either from cards or a card image file. The

type of processing to be performed on the source is specified through

commands that are input to FAVS. During an initial run, a RESTART file
is constructed which contains information about each module submitted
for analysis. FAVS has several components which extract information from
this file and produce reports. Figure 3.1 illustrates the basic elements
of a FAVS analysis. The name of the files are in parentheses; see Appen-

dix D for the logical units at RADC and DMA installatiouns.

Before the source text to be verified is submitted to FAVS, the

user should take certain preliminary steps:

1 I'he source text should be compiled by the UNIVAC FORTRAN V
or Honeywell series 6000 FORTRAN compiler to confirm that

it is free of any syntactical errors.

COMMANDS
(LCOMIN)

o«
e
S $
—————~ | RESTAKT i
FAYS FILE <
(LIBHEW
SOURCE
(L)
REPORTS
(Lour)
N

~ o

Figure 3.1. FAVS Analysis

DMATRAN User's Cuide, General Research Corporation CR-1-673/1.

i A e PO Yes o e T

2. The program should have been previously executed if it
will be dynamically tested.

FAVS processing may be specified by commands which have been de-
veloped to make FAVS easy to use. When these commands are input to
FAVS, they are expanded into a set of FAVS segment commands. The em-
phasis in this manual is on the user commands because it is the fastast
way to learn to ﬁse FAVS‘and, furthermore, will most likely be the way
most users will prefer. Appendix A contains description and details

of the segment commands for those who are interested.

The eight FAVS commands are:

RESTART

EXPAND
LANGUAGE=DMATRAN
FILE,PUNCH=<file name> !
OPTIONS=<1list>

<list> may contain one or more of the following options,

separated by commas:

LIST
DOCUMENT
SUMMARY
STATIC
INSTRUMENT
INPUT/OUTPUT
REACHING SET
RESTRUCTURE

FOR MODULES=(<namel>,<name2>,...). :

TESTBOUND,MODULE = (<name>),STATEMENT = <number>

REACHING SET,MODULE = (<name>),TO = <DD-path number>,
FROM = <DD-path number>, {ITERATIVE}.

Each command consists of a sequence of terms separated by a comma or an

equal sign. These commands--one to a card--are freeform; blanks are
ignored. The commands may be abbreviated by using the first four letters
of the first word in the command. The.names of the options also may be
abbreviated the same way. The first five are the basic macro commands. j

TESTBOUND and REACHING SET are specification commands used with the

€ -4v,-,“\h“;’.'. £y v ‘ Rl
R A, E.‘)’} P & ":Qv*??_-‘: e R

INSTRUMENT and REACHING SET options, respectively. The use of these two
commands is included in the respective option description in Secs. 4.5

ard 4.7.

3.1 RESTART and EXPAND

When a set of modules will be analyzed more than once, one of

the commands
RESTART or EXPAND

can be used to minimize execution time and reduce costs. The first time
a set of modules is processed (using any of the OPTIONS), a restart

file is created on LIBNEW. This file can be saved and used in subsequent
FAVS runs which further analyze the same modules (using other OPTIONS)

by taking the following steps:

° On the first FAVS run, save the restart file created on
LIBNEW.
® On subsequent FAVS runs, input the restart file from

command. If additional modules are to be added to the re-

start file, use the EXPAND command.

3.2 LANGUAGE
If the language of the source code to be analyzed is DMATRAN,

one other command is necessary.
LANGUAGE = DMATRAN.

No language specification is necessary for FORTRAN since that is the
default. Whenever DMATRAN source is generated by FAVS (as a result
of the RESTRUCTURE option or the INSTRUMENT option applied to DMATRAN

*
source) it must be precompiled before normal compilation and execution.

*
See DMATRAN User's Guide, General Research Corporation CR-1-673/1.

e - Gt .-un-q!!
‘

3.3 FILE

Several of the FAVS OPTIONS (INSTRUMENT, INPUT/OUTPUT, and RE-
STRUCTURE) produce enhanced source output in 80-character card image
form. This source normally goes to a temporary file (which may be
saved after the FAVS run). If the default assignment for the source
output file is not appropriate (see PUNCH in Appendix D), it may be re-

assigned with the command
FILE, PUNCH = <file-name>.

where <file-name> is the desired file name or file number.

3.4 OPTION
The command which controls the type of processing to be done by
FAVS is:

OPTION(S) = <list>

The eight possible options are as follows:
° LIST - produces an enhanced source listing of each module

° SUMMARY - provides an analysis of statements, common blocks,

and module dependencies.

® DOCUMENT - produces two reports for each module and a READS
report, commons matrix, and an overall cross reference re-

port for all modules.
o STATIC - produces a Static Analysis report of each module.

o INSTRUMENT - instruments the source code and writes the
instrumented code to the LPUNCH file.

. INPUT/OUTPUT - same as INSTRUMENT,but also translates
INPUT/OUTPUT statements into FORTRAN.

® REACHING SET - provides assistance in identifying paths to
designated code segmenté within specified modules.

— rmr———

|

s Bl i AR

o 2 o T oS - % LR
IR T B |
TR TG

-
-,

P
#

- RESTRUCTURE -~ generates structured DMATRAN programs
from FORTRAN programs.

More than one option may be specified, only RESTRUCTURE cannot appear

in conjunction with others. At least one option must be listed for any
processing to take place. When there is more than one option, a comma
between each is necessary. If the list exceeds 80 characters, addi-
tional OPTION commands are accepted. Continuation of the list on the
next card would not be recognized. A detailed description of each option

with examples of the reports the option produces may be found in Sec. 4.

3.5 FOR MODULES

The default is to apply the analysis requested in an OPTION com-—
mand to all modules known to FAVS. Selection of specific modules for
FAVS analysis is provided by the FOR MODULES command. This command has

the form
FOR MODULES = (<namel>,<name2> ,....).

where <namel> and <name?> are the FORTRAN names for modules which have
been input to FAVS., Main programs which do not have a program card are
given the name MAIN by FAVS. The FOR MODULES command is especially useful
to select specific modules on a restart file. Only one FOR MODULES com-
mand per FAVS run is allowed.

4 OPTION DESCRIPTIONS

This section is a reference containing a description of each
option which may be selected by the user to instruct FAVS which type of
processing to perform on the modules being input. An example of each
type of report generated by an option follows each option description.
With the exception of the RESTRUCTURE option (which is used alone), the
option list may contain one or more of the remaining options in any
combination. Table 4.1 shoys the FAVS options and suggested uses for

each.

e

B e

TABLE 4.1

=

FAVS PROCESSING OPTIONS WITH SUGGESTED USES FOR EACH OPTION

OPTIONS
USAGE

LIST

SUMMARY

DOCUMENT | STATIC | INSTRUMENT

INPUT/OUTPUT

REACHING
SET

RESTRUCTURE

Software
Documentation

Maintenance

Implementation

Obtain
Interface Data

Trace Ranges
of Variables

Execution
Test

Incomplete
Test
Coverage

System Test
Information

Single Module
Information

Code Changes

Unknown
Behavior

Integration

Acceptance

-

T

N AR AT

4.1 LIST

The LIST option produces a source listing which shows the number
of each statement, the levels of indentation, and the DD-paths. With
an automatically indented listing, the programmer is relieved of having
to calculate and keypunch each indentation manually; this is especially
useful when changes are made to the code which would require changes in

the nesting level.

An indented listing clearly indicates the control structures and
makes the program much more readable, not only to the original programmer,
but especially to someone unfamiliar with the code who is trying to un-

derstand it.

The indented statement listing on the output file is the sole

report from the LIST option. Figure 4.1 illustrates a sample listing.

Command
OP'FI()N = L] ST
Report
Statelcnehintiae (Fig. 4.1)
CABLE
TH1S PAGE IS BBEST Qumtgc PRACTIC
FROM CORY T Y

OPTION = LIST

EST
THIS PAGE IS B
FROM COPY FURNLS

STATEMENT LISTING

NO. LEVEL LABEL STAT
1 SUBROUV
2 C
3 € ILLUST
4 c
S IF (I
6 (1) « CAL
7 ELSE
8 (1) » LEN
9 ENOIF

10 CASEOF
11 CASE ¢
12 (1) e LEN
13 CASE (
14 (1) « DOw
15 (2, . .
16 (3) . e
17 (3) ¢ .
18 (W) . o
19 (3) * o
20 (2) « e
21 (2) « o
22 (1) « END
23 CASEEL
24 (1) « DOw
25 (2) ¢ o
26 t 1) + END
27 ENODCAS
28 BLOCK
29 (1) « WRI
30 ¢ 1) 1 o FOR
5 ENCBLG
3 BLOCK
33 (1) ¢ LEN
34 ENDBLO
35 RETURN
36 END

OPTION = LIST

QuAL1!1:PBﬂ£2t1§A£!ﬂ!
HED T0 DDC

SUBROUTINE EXAMPL (INFO, LENGTH)

EMENT TEXTees COPATHS
TINE EXAMPL ¢ INFO+ LENGTH) « 0
RATION OF DMATRAN SYNTAX
NFO oLEs 10 +ANDe LENGTH «GTe 0) THEW (2-
L CALLER (INFO)
GTH = 50
(INFO + 6) (4=
14)
GTK = LENGTH = INFO
17)
HILE (INFO oLTe 20) « 7.

DOUNTIL (LENGTH JLE. INFO)

o INVOKE (COMPUTL 1ENGTH)

e IF (LENGTH +GE. 30) THEN (9=
e o INVOKE (PRINTWKESULTS)

« ENDIF

ENCUNTIL (11-
INFO = INFO + 1

wHILE

SE

HILE (LENGTH .GT. 0) (13-
INVOKE (COMPUTE LENGTH)

wHILE

E

(FRINT=RESULTS) (1%)
TE (6¢ 1) IKFG. LENGTH

MAT (10XeIS+20x015)

Ck

(COMPUTE LENGTH) { 16)
GTh = LENGTH - 10

CK

This report, output for each module submitted to FAVS, contains

the enhanced module
DD-path numbers (at

listing with statement numbers, nesting levels, and
procedure entry and at each conditional statement).

Figure 4.1. Statement Listing

6)

ey

in

14y

4.2 SUMMARY

The SUMMARY option is intended to be used when a brief introduction
; to a set of modules is desired. It provides an analysis of statements,
common blocks, and module dependencies. The statements of individual
modules are classified separately as either declaration, executable, de-

cision, or documentation. Under each classification a tabulated account

i of the various subtypes is listed. A separate Statement Profile report

with this information, is generated for each module.

An overall view of the modules is given by the Library Dependence

and the Common Matrix reports. The Dependence report shows the invokee

and invoker modules and presents a picture of module dependencies. It

also lists high level modules, those not invoked by any other module on
the library, and low level modules which do not invoke any others on the
library. The Commons Matrix report lists all the common blocks encountered
in any of the modules. When program changes are made, the Dependence and
Commons Matrix reports can be used to identify modules which may be af-

fected.

A report Index from the SUMMARY option is shown in Fig. 4.2 to
k illustrate individual and multi-module reports.

REPORT INCEXeos

PAGE MODULE NANME
MULTI=MQOULE REPORTS
E LI8ARY DEPENCENCE 3
a COMMONS MATRIX “
5 SUBROUTINE EXAMPL (INFO, LENGTH) EXANPL
STATENENT PRUFILE 1
SUBROUTINE CALLER (INFO) CALLER
STATEMENT PROFILE 2

Figure 4.2. Report Index ‘xi?%fi;"//
es i

The Statement Profile for Subroutine EXAMPL is shown in Fig. 4.3;
(a Statement Listing of EXAMPL was used to illustrate the output from
the LIST option in Fig. 4.1.). Two multi-module reports, Library De-

pendence and Commons Matrix, are shown in Figs. 4.4 - 4.5.

Command
) OPTION = SUMMARY
Reports
Statement Profile (Fig. 4.3)
Library Dependence (Fig. 4.4)
Common Matrix (Fig. 4.5)
1
)
4-6

v

* sy SR A A8 D Y .
R »&.‘..’}f 4 V,....) ".?‘;‘»:‘m .

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED 10 DDC e

OPTION = SUMMARY OPTION = SUMMARY
STATYENECNT PROFILE SUEROUTINE EXAMPL (INFO, LENGIH)
INTEKFACE CHARACTERLISTICS
i

ARGUMENTS -

ENTRY 1

EXIT 1

INTERNAL FROCEDURES 2

INVOKES 4

WRITE 1
STATEMENT STATEMENT
CLASSTFICATION TYPE NUMBER PERCENT
CECLARATIONGw o

FORMAT % 1 2.8

TCTAL 1 2.8
EXECUTABLE e

ASSIGNMENT 4 11.1

CALL 1 2.8

CASE 2 Se6

CASEELSE 1 2.8

DOUNTIL 1 2.8

ELSE 1 2.8

EACBL 0CK 2 5.6

ENQCASE 1 2.8

ENCIF 2 56

ENCWHILE 2 5.6

ENC 1 2.8

INVOKE 3 8.3

RETURN 1 2.8

WRITE 1 2.8

TCTAL 23 63.9
CECISION+ee |

BLOCK 2 5.6

CASEQF 1 2.8 i

DOWHILE 2 S¢6

ELDUNTIL 1 28

IFTRAN=TF 2 5.6

SUBRCUTINE 1 2.8

TOTAL 9 25.0
COCUMENTATION. o

CUMMENTY 3 83

T01AL 3 8.3

* 107AL PERCLNTAGE MAY BE MORE THAN 106 EBECAUSE OF QVERLAFPING CLASSIFICATIONS

This report classifies each statement of a module as either a declar-
ation, executable, decision, or documentation statement. Under these
lassifications, a tabulation of the subtypes is listed.

Figure 4.3. Statement Profile

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM Cur'Y FURNISHED TODDC

OPTION = SUMMARY OPTION = SUMMARY

LIBRARY DEPENDENCE i -

B2 R IR 2SR A RS REPREV ISV ESRE X SRR L LS RE NS SE0 S8

s* INVOKEE = * .
s s sCCEFKMMPS®AAABEEGGGGGGIIIIIIIKKMNNNNPSV s
s s s00XVUEAQUT*CCSGNREEEEEOFFGNNIsWCLOADEEUPE®
* * sNNALMIVTR*TTSSORNNNNTTCSRODITOAVMSWW TRR S
& s sTTMCPNEFUL*12ICEVOAGLVSOAQQOELTTMSEQCLPIYBS
*] #R POT wTCx GARRSCAAT S UNEAKPSwWBAAAFwAx
* * sl LNY ONT= NN S BRM E PTVLN 1U NBG CT=
3 s] *
* * 2 L 3 s
% INVOKER == * *
S0 X YRR XXX S LSRR XL LB XA PRSP B ER RV SRR BXSS SRS SESEER
s CONTRL % X®XX XX X X X XX =* 3
s CONT s & X = »
s EXAMPL « % = &
* FULCON & X X X % s
s KEMPTY * = * b »
s MAIN =X * ® &
* MOVEWD s X s ® *
s PUTFTIN * X = b4 X X =
* STRUCT s X X X&x X XXXXX XXXX X X X X X XXs
RSXX XV RS REX RS LS R XXX EEEX LB RS LR X EEE S SRR EEE2ES S S

THE FOLLOWING MODULES ARE NOT INVOKED BY ANY MODULE ON THE LIBRARY
E KAIN

| THE FOLLOWING MODULES DO NOT INVOKE ANY MODULE ON THE LIBRARY

b EXAKPL KEMPTY

The interaction of all modules on the data base library is shown in
the first matrix. If the library contains all modules in the user's pro-
gram, this report provides a concise, complete picture of the total internal
module dependencies. If the library contains a subset of the total pro-
gram, this report aids in determining what modules do not interact with the
component and might be better suited for another component. The modules
are listed in alphabetical order.

The modules in the second matrix are not resident on the library.

If the library allegedly contains all modules in the program, the exter-
nal modules should consist only of system routines. If the library con-
tains a component of the total program, this report shows the module in-
vocation interfaces to other externals.

Considering the modules on the library as a pyramid representing the
invocation hierarchy of the modules, this report also identifies the "top"
and "bottom" modules in the system.

T T ——Y

Figure 4.4. Library Dependence Matrix

OPTION = SUMMARY

OPTION = SUMMARY

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED T0DDG ____—

COMMONS MATRIX

LIBRARY COMMON BLOCK MATRIX

C x» * ° »
O * « MODULE » C CE F KeM MNP S =
Mx * 00X UE.ACQUT =
M = * NNAL MJIVTRG®*
0 = * * TTHKCPWNETFUH=»
N = * * R POTse WwTC =
b4 * * | LNYe OCNT=

N * x % o *
O * COMMON » » . »
* =% . *
.--------------------.-.--.---.-..-.
1 = ACCTNG * X o *
2 = CARDS X Xe *
3 x CONSTN » X X Xo X X =
4 & FQRTRN * X X . X X =
S % INTERN ® X X . X X =
6 *x INVOKE * X . X %=
7 * RECNIZ * X . *
8 = SgSE * X o *
9 *x STACK * X . X =
10 » STATE * X X X X »
11 * gTYPE * X . X =
12 * TRACE * X . X *
13 » USECOPT s X X Xe X X *
14 = WARNIN * X . *

An "X" indicates the presence of that common in a module.

: Figure 4.5. Commons Matrix

> AL PG I S v
T a S W =

This report lists all modules and all common blocks encountered.

TR T Y RS GRE, €

S5

i

FRre o

4.3 DOCUMENT

The DOCUMENT option generates a set of five different reports. Two
are individual module reports and are produced for each module which has
been input to FAVS. The other three are multi-module reports. Figures

4.6 - 4.10 contain examples and a description of each report.

Note that the Commons Matrix report (Fig. 4.10) is similar to the
one produced by the SUMMARY option (Fig. 4.5), but it has considerably
more information. The Commons Matrix report of the DOCUMENT option
lists all the common blocks encountered and indicates, for those modules
containing that common block, whether or not at least one symbol has
been referenced. A second matrix shows the variables from these common
blocks which are referenced by at least one module; their usage in the

other modules which contain them also is itemized.

This set of reports can be used throughout the testing process.
Together with the execution coverage reports, they help to identify
which modules may require retesting when changes are made in the code.
The Global Cross Reference report is particularly useful in finding where
variables are set in order to alter test cases, and also where a variable

is being used that is affected by a change in a module.

Command
OPTION = DOCUMENT

Reports
Invocation Space (Fig. 4.6)
Invocation Bands (Fig. 4.7)
READ Statements (Fig. 4.8) f
Cross Reference (Fig. 4.9) ?
Commons Matrix (Enhanced) (Fig. 4.10)

: OPTION = DOCUMENT OPTION = DOCUMENT

THIS PAGE IS BEST QUALITY PRACTLCABLE
EHOI‘)OPY.’URNISHEI>IK)DDQ i

InVOCATION SPACE SUBROUTINE CONT (LABEL)

B .

INVOCATICNS FROM WITHIN TYHIS MOCULE

i I i T ey .

#CDULE MOVEWD
STMT = 26 CALL MOVEWE (5 4 1 4 LABEL + 1 + KABEL)
SIMT = 28 CALL NMOVEWEL (8 v 1 + ICONT v 1 o KFTW 3

INVOCATIONS TO YHIS MODULE FRCM wWITHIN LIBRARY

e e ST - -

#CDULE FULCQONM

SINT = 14 CALL CONT (LABEL }
MUDULE sTRUCT

SIvT = a6 CALL CONT (LAB)
SIMT = 103 CALL CONT (LAS)
STHY = 124 CALL CONT (LAB)
SIpyT 2 193 CALL CONT (LAB)
SIMT = 165 CALL CONT (LaB)
SIMT = 202 CALL CONT { LAB)
SIMT = 236 CALL CONT (LAB
SIMT = 258 CALL CONT ¢ LAB)
SIMT = 282 CALL CONT (LaAB)
SIFT = 292 CALL COnT ¢ LAB)
STHMT = 303 CALL CONT (LAB)
STeT = 206 CALL COnT (raB)
SIMT = 348 CALL CONT (NAMEL)
STMT = 361 CALL CONT € WAMEL)
STMT = 373 CALL CONT (NAMEL)

This module report shows all invocations, along with the state- 4
ment numbers, to and from the specified module. It is useful in exam- !
ining actual parameter usage.

Figure 4.6. Invocation Space

OPTION = DOCUMENT OPTION = DOCUMENT | |

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURMISHED T0 DDC e

SAVOCATION 8ANDS SUBROUTINE FULCON ¢ LABEL)
76 LEvgy, 2
tavee -3 -8 -3 -2 -1 [}] 1 2 3 L)] 5
FULCON
sTRUCT CONT
CONTAL "ovEnD
KEuPTY
RCONP
PUTFTN
INCENT
ROvERD
RCVEaV 1
SPRYWD

This report shows the selected module within the invocation hierar-
chy. At the center is the specified module. Each successive band of
modules from the center to the left shows the calling modules; each suc- i
cessive band to the right shows the called modules. The left (calling)
modules reside on the library; the right (called) modules can include
modules external to the FAVS library.

Figure 4.7. Invocation Bands

& W\v;m’«qm;,w.,, p.

L Y e 2 P e
- — AT d

OPTION = DOCUMENT

OPTION = DOCUMENT

THIS PAGE IS BEST QUALITY PRACTICABLY
FROM COPY FURNISHED 10 DD ____—

READ STATEMENTS

TRE FOLLCWING MODULES CONTAIN READ STATEMENTS

GETCRD
GETINS

B Ry - ST .S W D e T e Y e W W

READ STATEMENTS AND ASSUCIATEL FORMATS

e e e I L .

wse GETCRD ==
16 READ (LUNINy 2) (LCARD (I is I 3 1. 80)

17 1 FORMAT (B80A1)

ece GETINS ===

4y READ { 8¢ 1) ¢ NUN ¢ f)y I 5 1o NOPYS)
45 1 FORMAT (1215)

This report provides a list of all the program modules in which a
READ appears. The source statements are reproduced along with the
defining FORMAT. This vreport may be used to locate all the points where

variables are being input to the system.

Figure 4.8. READ Statements

4~13

L R A AR R BN

Ve g e e AR

- = G " R
e ——— - .

e OPTION = DOCUMENT
7815 PAGE LS BEST QUALITY PRACTICABLE

CROSS REFERENCE

GENERAL CROSS REFERENCE LISTING
MGDULES INCLUDED =o

CONTRL
CONT
EXAMPL
FULCON
KEMPTY
MAIN
MOVEWD
PUTFIN
STRUCT
STMBOL MODULE USED/SET/CEFINITION (» INDICATES SET, O INDICATES CEFINTTION)
ACTL CONTRL 172
AST2 CONTRL 174
ASSIGN STRUCT 180
86GSCAN CONTRL 168
CUNTRL CONTRL 1
MAIN 2
CGNT CONT 1
FULCON 14
STRUCT 86 103 12% 153 165 202 236 253 262 292 303 3Ce S
ENDER CONTRL 183
ERROR STRUCT S3 107 111 113 128 130 169 171 213 217 219 240 244
EXAKPL EXAMPL 1
MOVEWOD 33
| FuLCON FULCON 1
STRUCT 84 101 122 137 160 199 234 255 275 298
GEMASS STRUCT 341
GENGO STRUCT 369
GENLAR STRUCT 73 81 85 98 102 123 .139 141 149 152 161 164 195
281 283 291 299 302 30% 339 340 357 360 371
GENVAR STRUCT 179 208 }
GETSTH CONTRL 164
GQTO STRUCT 82 99 1S5S0 162 196 232 278 300 343 358
IARRY] MOVEWD 1 23C 29«
1ARRY MCVEWD 1 <22C 29
ICONT CONT 240 25C 250 250 23D 250 250 25C 250 28
1€0F CONTRL 290 165 180 .
KEMPTY S0
1ERROR STRUCT 92¢ 93 94e 95 110 120e 121 127 158« 159 168 190e 191

243 253% 254 265 296% 297 309

This report provides a symbol cross reference listing for all
modules on the library. The symbol types are variables, file names, block
names, and subprogram names. Adjacent to the statement number of the
symbols appearance is a flag * (or D) indicating setting or definition.

Figure 4.9. Cross Reference

| }

THIS PAGE IS BEST QUALITY PRACTLICABLE
FBOM OOPY FURNISHED T0 DDC

OPTION = DOCUMENT

LIBRARY COMKON BLOCK MATRIX

PR T T L L L L L P L PR L L L

Cs
.
.

0
L}
L]
o
N
]
0

L ENO U EOLN M

& 80 0 EED SRR REEIESE NN

s » . .
e« MOOULE ¢« C C E F KM ¥ P S =
* s 00 Xx VUEACUT
» s NNALNMIVTIRS
. e T TMCPNEFUS
L] s R PO T, atlCes
L] LI S LNY, CNTE®=
= /! .
COMMON = = . .
(1] . .
eTesorRcant s mtennen ceasteven
ACCTING -+ O . -
CAROS s X O »
CCNSTN 0 X Xo X X =
FORTRN *« 0 X . X 0=
INTERN L o . X 0=
INVOKE * C . X =
RECNIZ * Q . .
SESE s C . *
STACK * 0 . X ®
STATE X X 0 x =
STYPE * 0 ¢ 0=
TRACE * X . X »
USEOPT . = X 0 0. XX e
wWARNIN « Q . .
(3]

LEGEN

D et .k LT L T P R L T ey

CCVMONS VS« PODULES

X => AT LEAST ONE SYNMBOL REFERENCED
0 => NO SYMBOL EVER KREFERENCEC

SYMBOLS VS. MGCULES

emcmcempesRccsnccanaY

X =>
=>
=>
=y
=
=>

»MCcCwno

SyveOL
SYNBOL
SyYveoL
SYVEOL
SyveOL
SYVBOL

Two matrices are produced by this report.

SET AKD USED

NEVER SET OR USED

SLT ONLY

USED ONLY

EQUIVALENCEC (CVERLAID) ONLY
1S AN ARRAY

OPTION = DOCUMENT

LIBRARY COMMON SYKROL MATRIX

B L Ty

i L

C »» »

O & 2 MODULE ¢

L . »
(I . *

(I 3 L *

N s L L]

. . .

N ® s @

0O & SYMBOL » »

. .

2 » JEgCF »
13 & 100N *
Y w INSTAK .
10 » ITYPE »
A% = KABEL .
4 ® KENGTH #
AY ® KFTN -
13 & KQMFTIN »
S ® KSTMY *
Alp ® LABEL »
S o LEK v
10 & LENGTH *
10 * LINBEG *
10 & LINENC
AlQ & | 1ST)
10 ® LPCINT .
AY & LSTACK *
10 = LTYPE *
13 & LUMNFOR *
13 & LLNOUT .
10 & WENGIN -
12 & NALTER *
A6 % NAVE]L L
S * NFATER]
13 & NINONY *
S & NLINES =
€ = nQBE .
A6 » NCBLOK »
A6 = NQINV .
10 * NSTATE *

FoqZOoN

XKOOOVWOCOODT OXDOOCCWMWOODCOCOCOCOOC

--ZOoO
FOXD >xmMm

oo [oCwx Q

(=]

2oo0rc

© coCcoCcOoOC X O

]

0.
O

(=]

<

[=X-]

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
.
.
.

FamMm~C T
- X~

COOCxXCcCOOOCCoOrCcOoOCXO
B0 B EREEREDPE DTN RRERP NRCE RSB RENane

CoOOCOGU OocOoO0COCOCCrXCO C©

oOox O
xXUXOO0OOC

[

The first one lists all

common blocks encountered in any one of the modules in the set which was
analyzed.
1f no symbol was ever referenced in the module, this is indicated by a "0".
Routines from which a common block may safely be removed are easily found.
The second matrix lists only the symbols which are used by some
module; the number of the common block in which it is found is printed

to the left and corresponds to the number given to the common block in

the first matrix.

If at least one symbol was used,

made to a software system.

Figure 4.10.

Commons Matrix (Enhanced)

it is indicated with an "X".

This report is an excellent aid when changes are being

4.4 STATIC
The static analysis techniques available in FAVS include:

o Mode and type checking which identifies possible misuse of
constants and variables in expressions, assignments, and in-
vocations.

° Invocational checking which validates actual invocations

against formal declarations; checking for consistency in

number of parameters and type.

. Set and use checking which uncovers possible use before set

conditions and similar program abnormalities within a module.

° Graph checking which identifies possible errors in program

control structure such as unreachable code.

A rigorous analysis of program variables, including 1nterprocédura1
checking, provides FAVS with the capability to uncover subtle inconsis-

tencies which lead to errors, such as:

® The number of parameters listed does not agree with those of

the routine called.

) The mode of an actual parameter does not match that of the

corresponding formal parameter.

° A parameter is listed in the calling argument list as a
single, non-subscripted variable but is used in the routine

as an array.

] Uninitialized variables or arrays are used.

Another consistency check is performed on the structure of the pro-
gram. The graph for each module is checked to see that all statements
are reachable from the module's entry and that the module's exit is
reachable from each statement. Unreachable statements represent extra

overhead in terms of memory space required for a module, while statements

4-16

from which the exit cannot be reached represent potentially catastrophic

system failures.

The output consists of a Static Analysis report for each module.
A very simple program has been seeded with several errors to illustrate
the type of report generated by the STATIC option; it consists of two
subroutines, CIRCLE and PRNT; the Statement Listing for each, from the
LIST option, is in Fig. 4.11.

The Static Analysis report for Subroutine Circle is in Fig. 4.12.
It contains a Statement Analysis Summary and a Symbol Analysis Summary.

Sl i

Command
OPTION = STATIC

Report
Static Analysis (Fig. 4.12)

4-17

AT IR T YRR ” Y S A YO S+ o -

=T ARE 5 A sty T
gaRbel TN

i AN v ==

PRACTICABLE |
gB1S PAGE IS BEST QUALITY FAAL . :
T30 0QE) TUBRLSHED 70 D00 ™™ |

STATEFENT LISTING SUBRQUTINE CIRCLE (AREA) PAGE 1
NO. LEVEL LABEL STATEMENT TEXT... X COPATHS
1 SUBROUTINE CIRCLE (AREA) « 1
2 COMMON / VALUES / DIAMTR 5
3 INTEGER AREA
O RADIUS = DIAMIR /7 2
] AREA = pI » RADIUS o8 2
6 IF (AREA .GT, 50) (2= 3 3
7¢1) *, THEN I
8 CALL PRANT (AREA) ?
9 ENDIF
10 RETURN
11 CALL STACK (RADIUS: AREA)
12 (1T1]

T R L L L e S A ey

STATEMENT LISTING SUBROUTINE PRNT (AREAe RAQIUS) PAGE s
NO. LEVEL LABEL STATEMENT TEXT... coeatis ;
1 SUBROUTINE PRNT (AREA. RADIUS) ghUde A
2 PRINT 1, (RADIUSs AREA) :
3 1 FORMAT (2X+ 2(F6.2)) :
M RETURN i

B T L L R e T D L T T X R

These Statement listings were generated by the LIST option.

Figure 4.11. Statement Listings

4-18 5

e o

ey - e AT AT
FROM COPY FURNLSHED 10 DDG _—
OPTION = OPTION = STATIC
.
e
SVATIC ANALYSIS SUBROUTINE CIWCLE t AREA
SEG NCST SOURCE UhnhONN CXTERNALS
kit SUURQUTSAE CIRCLE (AREA 1}
Fl COMMON 7/ VALUES /7 Llamra
3 JLTEGER AKLA
. HAQIUS 3 ClAMYR ¢ 2
£y AHEA = Pl » RAQDIUS se 2
- g aCL,z LARATNG -
« LEFT KAND SICE HAS WODE INTECERAIGRT WARC SIDE ras »..Dl: au; -
avneee e L i e R s v e
. IF (ARCA 6T, %G) Ingh
T 63 s CALL PRAT (AREA
- o i LA\! CRACK -
- PRNT Cn.u:c wifh 1 ACIUALLY HAS 2 Aku-u" -
- CaLL CRRCR -
~PARABCTER 1 OF PRNTY CACTUAL PAAAYETER nAS #COL TNTEGLR -
- JECRNAL PARAFLTER HAS MODE wEAL -
1] ENOIF
’ RETURN
i CALL STACK (RACIUS, nu)
. g Cnlvu BARNING -
- uu:lmr 10 IS UAKLACHAELE OR IS IN AN lm aln: Leop .~
e $TACK
14 END
: STATEMERT ANALYSIS Sukxans EMACRS WANNINGS
GRAPH ChECKING [> !
CALL CHECKING 2 L]
MODE CHECKING L] i
1ST TOTAL LAST In/0UT ACTUAL PHYSICAL
NANE SCOPE MODE STPT USES STmT USE usE UNITS
B e L e o
AREA PARARCTER INTEGER 1 . 10 BOTH
GIANTR vALLES REAL 2 2 - hPUT
*aplus LOCAL REAL L] 3 10
i LocAL REAL] 1]
: etvesstcctttactcntrsnrnarmat et T Caie e ccsscarsancetsenacssantnsene
- SCI/USE waRNING -
* VARIABLE P1 K&y BE LSED BEFCRNE BCING Assxu~(n A VALUE -

SYRBOL ANALYSIS SumMany UH‘(GIS wARHINGS
SLT/USE CHECKING (] T

The Statement Analysis Summary contains the warning and error mes~

izes interspersed appropriately in the code. Unknown ex routines
iled which are not in the set submitted to FAVS, are 1 the right

ide of the printout. A tabulation of the errors and warnings i1s listed
it the bottom.

The Symbol Analysis Summary sh the name, scope, and mode of each
symbol in any executable statement in the module. The actual use of global
variables is defined as INPUT, OUTPUT, or BOTH. For anv variable that is

used before being assigned a value or set and not used
s the condition which could lead to errors.

5

, a warning indi-

Figure 4.12 Static Analvsis
3

4~19

4.5 INSTRUMENT
Figure 4.13 illustrates FAVS instrumentation of a FORTRAN or DMATRAN

program to prepare it for an execution coverage test. The command
OPTION = INSTRUMENT

causes the set of input modules to be instrumented. The instrumented
modules will be written to file LPUNCH inlaphabetical order. A DD-path
Definitions Report will be generated for each instrumented module.

COMMANDS S
(LCOMIN) :
=
l <
RESTART
| Favs =
(LIBNEW)
SOURCE
Sh DD-PATH
LIN -PA
s DEFINITIONS
(LOUT)
INSTRUMENTED
SOURCE
(LPUNCH)

Figure 4.13. FAVS Instrumentation

- - ” . : < -
TR A e g O AT T AT, ¢
" g

i
¢
3
.

A DD-path is a sequence of executable statements emanating from a con-
ditional statement and continuing to the next conditional statement.

Since complete DD-path testing means exercising all possible outways of
conditional statements, this is a more rigorous testing measure than
exercising all program statements. All of FAVS execution coverage reports

are presented in terms of DD-path, not statement, coverage.

INSTRUMENT inserts a set of probe statements into each module. The
probe statements are inserted into the source text at each entry and each
exit of the modules and at each statemeﬁ; which begins a DD-path. Each
probe includes a call to a data collection routine which records infor-
mation concerning the flow of control in the executing module(s). A

special probe is inserted at the end of the main program to signal the

end of test execution. The user can also have this special probe inserted
at other pqints in his code, which has the effect of breaking one test

execution into multiple test cases.

The instrumented source text is written to file LPUNCH, either in
DMATRAN or FORTRAN depending on the language being processed. The file-
can be input to the FORTRAN compiler (after first being processed by the
DMATRAN precompiler if that is the source language). The instrumented

object code is then ready for loading and test execution along with a

T ——

FAVS supplied data collection routine.

1 During execution of the instrumented program, the probes record on

the LTEST file a summary of execution data which resulted from processing

the set of test cases input for this run.

There is a special instrumentation command which allows the user
i to insert special probes into his instrumented code which delineate test
cases within the test execution. The user specifies a statement within

a given module. Before each execution of this statement, the last test

case is terminated and a new test case is begun. The form of the command

for identifying a test execution boundary 1is:
TESTBOUND,MODULE = (<name>),STATEMENT = <number>

where <number> is the FAVS statement number in module <name> where the
test-case delineation probe is desired. The probe is inserted before

the number specified; therefore, the number should be that of the first
statement not to be included in the test case. Up to ten TESTBOUNDS may
be specified during any one instrumented run. All must immediately follow
the OPTIONS command (preceding all REACHING SET commands).

The instrumented code is written on LPUNCH. The output of this
step is a DD-path Definitions report, as shown in Fig. 4.14. It is an 3
indented source listing of an individual module with additional DD-path
information. At each decision point, the DD-path generated is described

in terms of its decision outways. When measuring testing coverage, the

user can refer to this report to associate the DD-path definitions with ;j

his original source text.

Commands ;
OPTION = INSTRUMENT ' !]
TESTBOUND,MODULE = (<name>),STATEMENT = <number> 4

Report

DD-path Definitions (Fig. 4.14)

OPTION = INSTRUMENT OPTION = INSTRUMENT

THIS PAGE IS BEST QUALITY PRACTICABLE
¥RO0M OQPY FURBISHED TODDC aaer"

DUPATH CEFINITIONS SURKOUTIAL €XaxPL (IKFQ. LENGTH)
3 SUCROUTIAE CXAMPL (INFO. LENGTH)
4 DOPATH PROCECURE ENTRY
3 ILLUSTRATION OF DMATRAN SYATAX
L]
] IF (INFO oLEe 10 «ANDe LENGTH .GT. 0) THEN
®¢ DOPATH 2 1S VRUL BRANCH
®¢ COPATH 3 IS FALSC ERAICN
6t 3 « CALL CALLER (INFO)
? ELSC
. s (1) e LENGTh = SO
’ ENOLF
10 CASEOF (INFO ¢ 6)
®s DOPATH & IS GRANZK OUT.AY 3
8¢ DOPATH 3 IS GRALIM CUTLAT 2
®e LOPATH 6 IS BRANCH OUTkAY 3
1 CASE ¢ 34)
12 ¢ 1 o LEWGTH = LENGTH - INFO
13 CASE (37)
"y e QOMNILE (IWFO «LTe 20)
e DOPATH 7 IS LOCP AGAIN
®s QOPATN & IS LOGP ESCAPC
1 1S e o OOLETIL (LEWGTH .LE, IKFO)
g 16 ¢ 3 o o o INVOKE t CCMPUTE LENGTH)
1Tt N e o o IF ¢ LEHGTh «GE. 30) THEN
@e DCPATH 9 1S TRUE ERANCH
®e COPATH 30 IS FALSL 3RAuCH
10 (W) e o o o INVOKE (PRINT-RESULTS ?
193 e o o ENOIF
20 ¢ 2) e. o ENCUNTIL
¢v DOPATH 11 1S LOCP ESCAPE
o0 COPATK 312 IS LOOP AghIN
a8 .2 e o INFO = INFO ¢ 1
3 2 ¢ o ENDWRILE
a3 CASEELSE
™ o DOWHILE (LENGTH .6T. 0)
6s QOPATH 13 IS LCCP AGAIN
ee MOPATH 34 1S LOOP £SCAPC
2% ¢ 2) e o INVOKE (GOMPUTE LENGTH)
k 26 (1 o ENCuRILE
4 2 ENOCASE
F BLOCK (PRINTARESULTS)
®e QOPATH 33 1S A PROCCOURE EnTRY
29 () o MRITE € 64 1) INFO. LENGTM
0 ¢ 1 o FCRMAT (10Xe25.20x¢19)
n ENCBLOCK |
32 BLOCK (COMPUTE LENGTH) |
oo COPATH 16 IS A pROCCOURL EnYAY
3¢ o LENGTh = LENGTH = 10
30 ENCELOCK
3 RETUNN {
3 €No |
|
|
t 4
q
I
{
This report is useful for testing purposes because it defines the !
outways of all decisions and makes the decision points more visible by
omitting the intervening sequential statements.

i Figure 4.14. DD-Path Definitions

f 4=23

?
%

e e

Sy o S

4.6 INPUT/OUTPUT

Additional information may be gathered during the execution test by
inserting INPUT and OUTPUT statements into each source module. The
INPUT statements list the global variables (either parameters or in common)
that will have a value whenever the routine is invoked; the OUTPUT state-
ments list variables that will be assigned a value in the routine. An
INPUT variable may also be an OUTPUT variable. The INPUT/OUTPUT option
provides a dynamic tracing of the values of the program variables by
translating the INPUT and OUTPUT statements into FORTRAN code.

A type specification must be provided for each variable so the value
will be printed with the correct format. Any variable whose type is not
listed will not be printed. The syntax to provide type information is:

INPUT (/<type>/<variable list>,/<type>/<variable list>,...)
OUTPUT (/<type>/<variable list>,/<type>/<variable list>,...)
<type> may be REAL, INTEGER, HOLLERITH, or LOGICAL or the

respective abbreviations for each, R , I , H, or L.

<variable list> may contain non-subscripted variable names, array
names, individual elements of an array, or an array subrange, such as
(LIMIT(I), I = M,N) where LIMIT is an array with a dimension of at least
N and I 1s a variable whose value will be undefined after the INPUT
or OUTPUT statement is executed.

Some specific examples are:
INPUT (/I/NUMBER, (LIMIT(I),I=M,N),/R/AREA,RANGE,

* /L/DEBUG, /H/TEST)
OUTPUT (/REAL/AREA, /LOGICAL/DEBUG)

The INPUT and OUTPUT statements are turned into comments by this option of
FAVS, so they may be left in the code when the instrumented code is compiled.

4-24

The INPUT/OUTPUT option also performs the same functions as the
INSTRUMENT option, so the instrumented code on LPUNCH may be used in the

same way as described in Sec. 4.5.

The output of this option is the inclusion of the FORTRAN or
DMATRAN translation of the INPUT and OUTPUT statements in the code written
on LPUNCH. When the program is executed, the entry and exit values of
the variables with type specifications listed in INPUT and OUTPUT asser-
tions, will be reported. In addition, a DD-path Definitions report identi-
cal to the one from the INSTRUMENT option will be generated.

Command
OPTION = INPUT/OUTPUT
Report
DD-Path Definitions (Fig. 4.14)
4-25

I — . S R VT S > ?‘-v_: 2, v TR ¢ .
LA s o g A S

ot 3T

' L SN

4,7 REACHING SET

The analysis specified by the REACHING SET option executes the
module retesting assistance of FAVS. Presuming that a set of untested
DD-paths has been isolated, the user can identify a section of code he
desires to exercise. He inputs the desired DD-path number to be "reached,"
and FAVS generates the reaching set of paths from module entry or from a
designated DD-path up to the second DD-path number which has been speci-
fied. The user may specify either iterative (explained below) or non-
iterative reaching sets to be generated. FAVS prints a list of DD-paths
on the reaching set. With this output, the user is able to identify
which parts of the program need to be executed (and therefore which program
values need to be modified) for the selected DD-path to be executed.
Once this determination is made, test cases can be constructed, and the
user may rerun Test Execution to ascertain the additional program cover-

age provided by the new set of test cases.

The command
OPTION = REACHING SET

enables reaching set analysis to be performed. However, no analysis is
performed unless one or more reaching sets are specified. The command

for specifying a reaching set is:

REACHING SET,MODULE= (<name>),TO= <DD-path number>,
FROM= <DD-path number>,{ITERATIVE}.

The above command generates a non-iterative reaching set. The reaching
set which includes all possible iterative paths may be generated by
appending ITERATIVE (preceded by a comma) to this command.

A Reaching Set report is in Fig. 4.15; it lists the set of DD-paths
within the reaching set, followed by the source statements which make up
that set of paths.

4-26

T

THIS PAGE IS BEST QUALITY FRACTICABLE ¢
FBOM COPY FURNLSHED 70 DD e

OPTION = REACHING SET OPTION = REACHING SET

RCACHING SET ANALYSIS SUBROUTINE CLABS (Kk, ITYP)

NON-ITERATIVE REACHING SET FROM DD=PATH 8 TO DD-PATH 40

3 COPATHS IN REACHING SET
. 8 9 12 11 12 13 i 15 17 18 22
23 24 25 26 27 28 36 39 0 43 4 47

SOURCE CODE IN REACHING SET

73 (1) ¢ JCH = K (J)
74 (1) « IF (JCH .EQ. KBLNK) (8- 9)
75 (2) . COTO 26
76 (1) . IF (JHOLL) 12, 12, 7 (18- 12)
77 (1) 7 . DOB L =1, 1
78 (2) e o« IF (JCH .EQ. KDEC (L)) (13- 14)
9 (3) e + o ‘GOTO 10
8e (1) 8 . CONTINUE . (15~ 16)
81 (1) . IF (JHOLL - 1) 11, 11, 9 117-19)
64 (1) 10 « JHOLL = JHOLL + 1
85 (1) « GOTO 25
8o (1) 11 e JHOLL = 0 >
87 (1) 12 « IF (JCH .EQ. KLPAR) (22« 2))
88 (2) . . GOTO 20
39 (1) « IF (JCH .CQ. KRPAR) (24~ 25)
99 (2) . GCTO 18

3 91 (1) . IF (JCH .EQ. KCMA) (26- 27)
92 (2) e « GOTO 22
93 (1) . IF { JCH .EQ. KEQ) { 28- 29)
94 (2) . .« GOTO 23
100 1) 18 « JSW = JSW = 1
101 (1) « IF (JSWw) 19, 19, 25 (34- 36)
14 (1) 29 v JSW = JSW + 1
125 (1) 21 « JHOLL =]
166 (1) . GOTO 2%
107 (1) 22 « IF (JSw) 30, 30, 21 (37=- 39)
188 (1) 23 . IF (JSW) 24, 24, 32 (40- 42)
169 (1) 24 . JEQ = 1
110 (1) 25 « IF (ISW) 26, 26, 27 (43- 45)
111 26 CONTINUE (46~ 47)

This report shows which DD-paths must be traversed, beginning with a
specified DD-path to reach the target DD-path. Both the beginning and
the ending DD-path numbers are designated by the user in the REACHING SET
specification command. Coordination of this report with DD-Path Defini-
tions report allows the user to determine what values must be supplied to
the variables to affect the decision predicates so the appropriate path
- will be taken.

Figure 4.15. Reaching Set

4-27

4.8 RESTRUCTURE

The third FAVS capability is demonstrated in Fig. 4.16. The
RESTRUCTURE option translates existing FORTRAN programs into the struc-
tured language, DMATRAN. FAVS reads a FORTRAN source text, creates a
data base, provides an indented listing of the FORTRAN source on the
output file, and writes the structured DMATRAN modules on a file. To
obtain a listing, the DMATRAN file is input to the DMATRAN preprocessor.
Refer to the DMATRAN User's Guide, General Research Corporation CR-1-673/1.

FORTRAN ~————a= DMATRAN

*
COMMANDS S
(LCOMIN) S
1
-
RESTART <
FAVS = FILE
(LIBNEW)
FORTRAN
SOURCE ;
(LIN) INDENTED g
FORTRAN
LISTING
] (LouT)
DMATRAN
SOURCE
(LPUNCH)
DMATRAN
DMATRAN
PRECOMPILER LISTING
1

*OPTION = RESTRUCTURE

Figure 4.16. From FORTRAN to DMATRAN

S BT, S LA SR bl . - e 8

b %

Structuring does not change the logic of the uriginal program; in-
stead it reveals the structure of the algorithm so that it may be more
readily understood. The RESTRUCTURE option is useful when existing
FORTRAN programs are going to be maintained, modified, documented, or
studied. The structuring process is performed once, and the resultant

program can be listed and executed using the DMATRAN preprocessor.

FAVS replaces FORTRAN control statements with the following DMATRAN

statement constructs:

® The IF...THEN...ELSE...END IF construct to provide block
structuring of conditionally executable sequences of state-
ments.

(] The DO WHILE...END WHILE construct to permit iteration of a

code segment while a specified condition remains true.

@ The DO UNTIL...END UNTIL construct to permit iteration until

a specified condition becomes true.

Structured programs often use the same code more than once. FAVS
has the capability to isolate such segments of code and incorporate them
into a BLOCK construct and add INVOKE statements in appropriate places.
To make a program more readable, sections of code containing more than
100 lines are also put into a BLOCK construct and replaced with an INVOKE

statement.

If the RESTRUCTURE option is selected, no other options will be

processed.

......

The only input required by FAVS is a FORTRAN program in card image

form that is compilable. More than one routine may be submitted at the
same time. Note that the statement labels in the range 10000 to 19999
may be duplicated when the restructured DMATRAN source is precompiled
by the DMATRAN precompiler. > P
The output will consist of a Statement Listing for each FORTRAN
module, as shown in the example in Fig. 4.17 for Subroutine BSORT. The
DMATRAN modules are written on LPUNCH in card image form. The file on
LPUNCH may then be put through the DMATRAN preprocessor to obtain the
indented listing of the restructured module. The DMATRAN version of the
Subroutine BSORT is shown in Fig. 4.18.

Command

OPTION = RESTRUCTURE

Report
Statement Listing (Fig. 4.17)

4-30

OPTION = RESTRUCTURE

STATEVENT LISTING
NO, LEVEL LABEL S

L e P L L L P L L

1 suge
2 DIN
3 co
4 (1) .
S 2) s,

6 (1) .
700 .

6 (1) .
2 ¢ 1) 2 .
10 ¢ 2) .,
11 (1) .
12 (2) .,
13 ¢ 1) 4 .
18 (1) .
15 (1) 3 .
16 (1) .
17 ¢« 1} .
18 1 con
19 RET
20 EnD

OPTION = RESTRUCTURE

THIS PAGE IS BEST Qu
R0 QUALITY

s FRACTICABLY a

]x)Ian wmm——

SUBRQUYINE BSORT (Ne ARRAY)

TATEMENT TEXT,..

et T . L L T

ROUTINE BSORY (N+ ARRAY)

ENSION ARRAY (100)

11 =2y N

IF € ARRAY (X = 1) Sike AgRAY (X))
« Golg 1

SMALL = ARRAY (1)

ARRAY (1) = ARRAY (I = 1)
gl = 2

IF (4 LT, 1)

« GOTO 4

IF (SMALL «LT. ARRAY (J))
« G010 3

ARRAY (v « 1) = SwvaLl

GOT0 2

ARRAY (U ¢« 1) = ARRAY (y)
Jad =1

6010 &

TINUE

URN

B e L .- B T e T T T Y

This report is a source listing of the original FORTRAN module.
It is enhanced by indentation and statement and nesting level numbers.

Figure 4.17.

RPN F o MRS LA 1

Statement Listing in FORTRAN

4-31

R - ————— —

T — T S T T——

T —— r—— T —

'SEQ NEST SOURCE

|

VONPLIFUN

-
(-4

HPRRNRNUEWENERRSERNRNANNN R -

SUBROUTI
DIMENSIO
1 =2
00 UNTIL
IF (

.
ELSE

® ® & o 0 0 0 0 0 0 0 ° 0 0 00

END1
ENDUNTIL
RETURN .
END

NE ESCRT (Ny ARRAY)
N ARRAY (100)

(I «6To N)

ARRAY (I = 1) oLEe ARRAY (I)) THEN
1=1+1

SMALL = ARRAY (1)

ARRAY (I) = ARRAY (I - 1)

Js1-=2

NEXIT = 0

00 WHILE (NEXIT +EQ. 0)

IF (J «6Ee 1) THEN
. IF (SMALL .LT: ARRAY (U)) THEN
.] ARRAY (J ¢ 1) = ARRAY (u)
. ° JzJel
. ELSE
. . NEXIT = 2
. ENDIF
ELSE
. NEXIT = 1 1
ENDIF
ENDRHILE
ARRAY (U ¢+ 1) = sMALL
I1=14+¢1
F

This is not a report by FAVS, although it is the result of the
RESTRUCTURE option of the FAVS analysis. The DMATRAN listing is ob-

tained by using the file on LPUNCH as input to the DMATRAN preprocessor.

Figure 4.18.

Restructured Module in DMATRAN

Vi

5 FAVS CONSTRAINTS

FAVS imposes certain restrictions on the size of the restart file,
the command language, and the source text to be analyzed. Most of the
limitations based on size are generous (e.g., the maximum number of

nested IF statements is one hundred).

FAVS is capable of handling quite large source text files. Un-
usually large programs may have to be processed by several successive

executions, each operating on a separate file of modules.
Universal and syntax constraints (affecting all of FAVS processing)
are listed first. The remaining constraints are listed in sections ac-

cording to the option they affect.

5.1 UNIVERSAL: CONSTRAINTS

° Maximum of one card for any given command

° Maximum of 24 commas in any given command

° Maximum of 50 data base tables during any execution.

° Maximum of 250 separately compilable modules may be analyzed

at one time (i.e., total modules on RESTART file).
® Maximum of 80 characters per source card image read.

(] The maximum number of DD-paths which can begin at a state-

ment is 50.
] The maximum number of statements on a single DD-path is 100.

® The sizes of the two random files LIBNEW and LIBWSP
are established using a DEFINE FILE statement in the MAIN

routine. The current sizes are 500 records (of 500 words

each).

PP T8 0 s RTINS T WA) e S

5.2 SYNTAX CONSTRAINTS

The following implementation constraints are the current ones

which must be observed:

° Each module placed on the same library just have a unique
name. The first six characters should be unique. 4

° If any errors are detected in the source, one or more state- : "
ments on the RESTART file may be flagged as not parsed.

. Maximum of 100 DO statements in FORTRAN program. ;

. Maximum nesting depth of 25 DOs in FORTRAN.

° Maximum of 19 ENTRY statements in FORTRAN.

o Comments may not appear within statements.

® DELETE, START EDIT, STOP EDIT are not recognized.

® Switch labels may appear only in assigned GO-TO statements.

] ** is the only valid exponentiation symbol. |

° No parameter list may have more than 20 parameters.

5.3 DOCUMENT CONSTRAINTS

'] Maximum bandwidth of five specified in BAND analysis.
. Only the first 100 modules on the restart file are
) processed.

5.4 SUMMARY CONSTRAINTS

o Only the first 100 modules on the RESTART file are

processed.

8
!

RTINS ! A

5.5

5.6

5.7

INSTRUMENT CONSTRAINTS

® A maximum of five testbounds may be specified. !
e No FORTRAN labels between a range of 7777 and 8999.
° No routines named SPROB1 and SPROB2. ?
) The maximum number of DD-paths in one module is 9999. %

REACHING SET CONSTRAINTS

° Analysis is limited to modules with less than 1600 DD-paths
and less than 3200 statements.

RESTRUCTURE CONSTRAINTS

° The RESTRUCTURE option is used alone.

6 ANALYZER COMMANDS

A variety of coverage analysis reports can be generated from data

collected during execution of a program containing one or more modules
that have been instrumented by FAVS. (The INSTRUMENT option was dis-
cussed in Sec. 4.5.) Figure 6.1 shows the execution coverage sequence
beginning with FAVS instrumentation of a program, through the usual com-
pilation and execution (shown inside dashes), to the input of ANALYZER
commands which then generate coverage reports; the entire sequence can

be performed in the same run.

In order to proceed with verification of the software testing, the
source text (which has been instrumented by FAVS) is compiled and exe-
cuted. At program linkage time, any user externals necessary for execu-
tion of the instrumented code must be supplied. During test execution
the program operates normally, reading its own data and writing its own
outputs. The instrumented modules call the data collection routine
which records, on file LTEST, the accumulated data on module DD-path

traversals.

Each test execution may consist of a number of test cases. The
program identifies the end of each test case by executing a special call
to the data collection routine. The identification calls are automati-
cally inserted at the end of main programs. Others are inserted by di-
rection of the user, via the TESTBOUND command, at instrumentation time

as discussed in Sec. 4.5.

The coverage reports are generated by a set of commands that dif-
fer slightly from the FAVS commands (Sec. 3, 4, 5); for this reason the

ANALYZER commands are presented in this separate section.

There are two ANALYZER commands, an option selection and a module

selection command. The type of report is specified by the command:

OPTION(S) = <list>

|

|
1

FAVS
COMMANDS

e fliona
| FAVS W
l SOURCE
REPORTS
| |
INSTRUMENTED
| SOURCE CODE
l COMPILE
I (" UsER's
I I s } 'S EXTERNALS
EXECUTE
USER'S
| OUTPUT
COVERAGE COVERAGE
[COMMANDS i REPORTS

OPTION = INST.

LANGUAGE = DMATRAN.

Figure 6.1.

t FORTRAN OR DMATRAN SOURCE CODE.
MUST BE PRECOMPILED BEFORE COMPILATION.
IF DMATRAN IS THE SOURCE CODE LANGUAGE, PRECEDE THE OPTION COMMAND WITH:

* OPTIONS = INST, STATIC, DOCU, SUMMARY, INPUT, LIST.

** FOR MODULES = < NAMEl >, < NAHEZ By seen € NAMEn >,
OPTIONS = SUMMARY, NOTHIT, DETAILED.

Execution Coverage Sequence

6-2

AN-49089a

OMATRAN INSTRUMENTED SOURCE CODE

<list> may be one or more of the three options: SUMMARY, NOTHIT, or
DETAILED.

If the DETAILED option is specified, then the OPTION command must

be preceded by one or more module selection commands:

FOR MODULE(S) = (<name-1>, <name-2>, ... <name-n>)
<name> is the name of the module (subroutine, function, or

program) .

A maximum of 100 modules may be specified at one time. More than one
module selection command may be used to accommodate all specified mod-
ules. The DETAILED reports will be generated only for the modules named

in this command which have been both instrumented and invoked.

Since the Coverage Analysis program records execution trace data

in internal tables, the amount of data recorded is limited by table size.

The limitations are given below:

Maximum number of modules to analyze 100
Maximum number of test cases 10
Maximum number of DD-paths to analyze 2000

Maximum number of DD-paths not traversed

in any test case 1000

S b e A P

L S A S S s el

6.1 SUMMARY
The SUMMARY option produces a report which summarizes testing cov-
erage for all instrumented and invoked modules. Figure 6.2 shows a sam-

ple SUMMARY report, which lists the following information:

° Test case number
° Module names and numbers of DD-paths
e Number of module invocations, number of DD-paths traversed,

and percent coverage for this test case

[Cumulative number of module invocations, number of DD-paths

traversed, and percent coverage for all test cases

When multiple test cases are involved, the SUMMARY report shows data
from the current test case and the immediately preceding test case.
When the end of'the trace data is encountered, a cumulative summary of

all test cases is produced (Fig. 6.3).

Command
OPTION = SUMMARY

Reports
DD-path Summary (Fig. 6.2)

Multiple Test Summary (Fig. 6.3)

ANALYZER Commands
OPTION = SUMMARY

OPTION = SUMMARY

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED T0DD¢ ___—

4 1 7
: :nuuunlv--.tnl. TteEsT!: CURNULATLIYVE SuUNNARY
¢ 1
ST 1 ROCLLE NUNGER OF I NUFRER OF D=0 PATNS PER CENT 1 NUPER
CASC T maxt 00 PATNS 1 INVCCATIONS TRAVERSED COVERAGE 1 OF TESTS INVOCATIONS TRAVERSEO COvVERagl
T 1 1 [.
1 walw [} [t . 1 33.33 1 v 1 ? 6,67
: CLASS ”° : h 2 32,63 1 ? . L 1] FONY
1
: ssALLSS 101 1 3 32,67 1 v 1) [T
[1
[| []
I mAIN 3 It @ Y 33.83 1 . 1 2 66,67
: CLAsS 0 : 3 Y 37.76 1 . ’ L 1] sv.ue
]
= ssaLLSS 10 : 3 37.62 1 [} 98 .0
1

Figure 6.2.

DD-Path Summary (with the Immediately Preceding Test Case)

6-5

ANALYZER Commands
OPTION = SUMMARY

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED TODDC e

OPTION = SUMMARY

]]) 1
: I sUmMMARYe THulg TESTI CURVLATIVE sunmRmAnY
1 2 .t
VEST 1 MOLULE WURGLR OF ' T NUPBER OF 0-0'PATHS PER CCNY 1 WUROLW
CASE 1 wanC O<D PATHS | INVOCATIONS TRAVERSED COVERAGE 1 OF TCsTs INVOCATIONS TRAvEASCOD COVERAGE
: 12 1 t
1 wAln 3 1 1 2 6667]) 1] 66,67 |
: CLASS % 1 . . .0 t 3 . . (N |
] t |
1 ssaLLss 10 1 2 1.9 1 1 2 1.9 '
1 1 1 |
21 3 ' : |
1 man 3 1 (] 1 33.33] 3) 2 6,67
: CLASS " 1 1 " 39,69] 2 1 3 39,00
1 1
: ssALLSS 103 : s 39,49 1 2 3 28,60
]
31 ‘1]
1 mAIn 3 i . 1 33,33] 3)] 66,67
: CLASS ° : 3] 2.00 1 3] 1 N
1
1 ssaLLss 111}] 3 2.97 1 3 " 36.64
1 T ?
® .
° .
L4 .
o : (2 3 H Y
N 1 [1 33,33] (] 1 (] 66,67
1 cuass Y i 1 ' et 1 9 H » .16
5 1
‘ : sSaLLSS n : n 0.6 1 () % 90,02
1
10 { 5 i]]
PalN I3 (] 1 3.3 1 10) 2 66,67
1 ocuss ™ ;) o FE TR S T ’ » se.16
]
: S3ALLSS 303 3 20 27.72 1 30 »» 80,02
1 1
f
Figure 6.3. Multiple Test DD-Path Summary

6-6

6.2 NOTHIT
The NOTHIT option requests a report which lists DD-paths not exe-

cuted for all instrumented and invoked modules. Figure 6.4 shows a sam-

ple NOTHIT report, which lists the following information:

@ Module names
® Test case number
° Number of DD-paths not traversed, for this test case and for
all test cases
® DD-path numbers not traversed for this test case and for all
test cases
Command
OPTION = NOTHIT
Report
DD-paths Not Executed (Fig. 6.4)
6-7

QR o e T

I —————————

ANALYZER Commands
OPTION = NOTHIT OPTION = NOTHIT

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURMLSHED 10 DDQ

e Rt e it P P P Pttt P P P R T PP P I R F PR Pt F Pttt ittt E t 2t A 1]
MGCULE I TEST 1 PATHS LIST OF DECISION TO CECISION PATHS wOT EXEcUTELR
HAME I NUMBEK 1 NOT HIT I

LR Rt ittt R i P P R R R P R R P P P PP R PR E Pt Pt Pt P PR P P Rttt i it i 2 L 2]

<PAIN >1 10 1 2 1 1 2
. 1 CumuL 1 1 1 2

<CLASS > 1 10 1 71 I 3 s 6 7 10 12 13 14 15 16 17 18 19 20 21 22 24
32 34 35 36 37 33 39 40 41 42 43 4S 48 S0 S1 52 53
62 65 66 67 €8 70 71 I3 T4 Te 77 19 80 81 62 83 8y
88 89 9u 91 92 93 94 95 96 97 98
I CukuL 1 41 I S & 7 10 17 28 32 34 36 37 38 40 41 42 43 45 48
53 59 62 67 &8 70 71 77 79 80 83 82 83 84 b5 86 92
98

L L P Y T e e T e TP L P L PP P T 2

Figure 6.4. DD-Paths Not Executed

6.3 DETAILED
The DETAILED option command selects a report which shows a break-
down of individual DD-path coverage. A single testcase report like the

one in Fig. 6.5 is generated for each specified module which was instru-

mented and invoked. Figure 6.6 shows the cumulative report, which is

generated after the individual testcase reports. Both provide the fol-

lowing information:

®
°
°
®
Command
Reports
Rule
i
2
3.

Module name
Test case number

List of DD-path numbers, with an indication of those which
were not executed, a graphical representation of the number
of executions, and an itemized listing of the number of exe-

cutions

Overall module coverage data

FOR MODULES = (<name-1>,<name-2>,...<name-n>)

OPTION = DETAILED.

Single Test DD-path Execution (Fig. 6.5)
Cumulative DD-path Executions (Fig. 6.6)

Maximum of 100 modules names specified.

Repeat the module selection command as necessary; e.g.,
FOR MODULES
FOR MODULES

(<name-1>,...,<name-i>)

(<name-i+l1>,...,<name-n>)

The module selection command must precede the DETAILED op-

tion.

N NG TG e W e VO -~

VT 3.
" v
PRI LW

ok

YR
PN

ANALYZER Commands
OPTION = DETAILED OPTION = DETAILED

THIS PAGE IS BEST QUALITY PRACTLCABLE
FROM COPY FURBLSHED TO DUC e

HECORD OF CLCISION TO DECISION (DO PATH) EXECUTION

MOOULE sCLASS § TEST CASE NO. (]
LR D LD LR T Ll Ll Lty s S oo cocs T P ——
OC PATH I NO. NOT EXECUTED I NUMBLR OF EXECUTIONS == NORMALIZED TO MAXIMUM 1 1 NUMBER OF
NUMEER I leomcncec2(,cnccccif,*mcccecfl,enccccef(,=ce==100, 1 I EXECUTIONS
Seeecseccenececcccsanctccmcncccc st acanascesaannan (. cescecsrcamcecctecntarcntraccancaenns
1 I
1 1 1 1 1 1 1
4 1 1 1 2 g 1
3 1 3 00000 1 I 1
“ 1 1 b “ L 1
S 1 S 00000 1 1 1
cee 1 eee 00000 I see oo oo 1 1
7 I 7 00000 1 1 1
8 1 T OXXXXAXKXXXXXK KA XX XAKAK XXX X XXX 1 8 1 e
9 1 I XXXXXXXXXXX 1 9 1 18
b3 1 10 00000 1 1 1
11 1 1 xxxx I 11 1 8
12 1 I XXXXXX I 12 1 10
13 1 I X I 13 I 2
1. 1 T OXXOCAKXRXXKX XXX XXX XXX KKK XXX HATXXN XXX XXX 1 14 I e1
1% 1 I &XXX 5 1 18 1 8
16 1 T XXX XXMM XX KKK XXX XXX XXX XXX XXX X X I 16 I 73
17 | S 00000 1 I 1
18 1 1 I 18 1 1
19 1 1 Xxxx 1 19 I ?
20 .1 a0 00000 1 1 I
~ o
. L]
A (3
69 1 1 1 69 I 1
70 T 70 00000 1 1 1
71 T 7 000v0 1 1 1
72 1 1 1 72 I 1
73 1 1 1 73 1 3
74 1 00000 1 I 1
cee 1 eee 00000 I oo sse ooe 1 1
98 1 98 00000 1 . I I
- cosvsvasa cccece ccescancsceccannctctccsctcostcractnatatatsacsettcnvan
TOTAL NUMBER OF DD PATH EXECUTIONS = 422
TOTAL OF 61 NOY EXECUTED EXECUTED 37/ 98 PERCENT EXECUTED = 37.76

Figure 6.5. Single Test DD-Path Execution

ANALYZER Commands
OPTION = DETAILED

10 CECIsION

510N

(CO PATI) EXECUTIgN

e HOUEA

TC WAXINUN
UQe====e==100,

B e bt

OPTION DETATLED

LLvBER CF
EaLgviicns

: i
‘ o 1 1 1 1 9
2y 1 i Gy e
3 ! 1 b 3 1 1
hd : 1 1 % i d
e AR 0C0L0 1 1 i
oo T ene UUUGC 1 ese sav oue 1)
? b4 7 vigse 1 1 b
) .] AXAKAKAXKAKKRXAXKNKKAXKXAXXKRRX KX KX KX M 8 1 Y
s I 1 XXAXAKAXXXXXXX 1 9 i i1s
10 13 10 00040 | i 5
i t I OXXXXXNAXXXX i 33 1 95
12 b4 1 oxx 1 12 b 23
L .
= .
L .
i 1
es) 1 1 ea 1 X
09 1 1 I 89 1 1
S5 1 1 KXXXX 1 $0 1 “9
Si 1 I x I 51 1 32
5. 92 060u0 I I
93 1x 1 $3 H 13
e 1 % 1 9% t i3
5% 95 1 I I
I ees oar oo I 1
5 g8 1 I I

TUTAL NUVBER OF CD PATH ExECuTIChs = 2511

TOTAL OF 43 #UT EXECUTED EXECUTES 577 98 PERCENT ExECUTER = S8.16

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC s

Figure 6.6. Cumulative DD-path Execution

.y

APPENDIX A

L4 FAVS SEGMENT COMMANDS

LI YIS gt

B

— - ; ‘:} . we 7 » 4
- St A . o
3 '%‘Mgi‘ﬂ:‘:-.; 3@&:“«.‘ .

ne

FAVS processing is controlled by different types of segment com-
mands which are listed below. Appendix B presents a complete descrip- 1

tion, in alphabetical order, of the FAVS segment commands.

° Library Commands

NEW LIBRARY = <name>.

OLD LIBRARY = <name>.

R/W LIBRARY = <name>. :
° Start-up Commands

FILENAME,LOG=<file-number>.
FILENAME, PUNCH=<file-number>.
LANGUAGE = FORTRAN/DMATRAN.
SEGMENTS.

START.

] Process Option Commands
INSTRUMENT , TESTBOUND,MODULE = (name), STATEMENT = <number>.
STRUCTURAL, COMPUTE = FULL.
STRUCTURAL, JUNCTION = ON.

® Module Selection Commands
MODULE = (name).

FOR MODULE = (<name-1>,...,<name-n>).
END FOR.

FOR ALL MODULES.
END FOR.

Process Execution Commands

ASSIST,REACHING SET,TO = <DD-path number>,
FROM = <DD-path number>, {ITERATIVE}.

BASIC.

BUILD,DMT .

BUILD,PREDICATE.
BUILD,PARMETERS.

BUILD,CROSS.

DOCUMENT ,BANDS.

DOCUMENT ,BANDS = <number>.
DOCUMENT , COMMONS ,PRINT = FULL.
DOCUMENT , COMMONS ,PRINT = PART.
DOCUMENT , COMMONS ,PRINT = SUMMARY.
DOCUMENT , CROSSREF.

DOCUMENT, INVOKES.

DOCUMENT ,MATRIX,LIBRARY,
DOCUMENT, READ.

INSTRUMENT.

STRUCTURAL.

Standard Print Commands

PRINT,DDPATHS.
PRINT,MODULE.
PRINT,PROFILE.

Run Termination Command

END .

A.l LIBRARY COMMANDS
The LIBRARY commands define the name and status of library to be
used by FAVS,

° NEW LIBRARY = <name> is implicitly generated by default when-

ever an OLD LIBRARY command is not supplied. It causes a
new library to be created during BASIC and STRUCTURAL pro-

cessing. .1

° OLD LIBRARY = <name> informs FAVS that an old library is be-
ing supplied, so it is not necessary to execute the BASIC
and STRUCTURAL steps for the current run.

° R/W LIBRARY = <name> informs FAVS that an old library is be- H
ing supplied and that additional source will be added to it. :

If a LIBRARY command is used, it must be supplied before the START com-

mand.

A.2 STARTUP COMMANDS
The FILENAME,LOG = <file number> command is used to direct the ac-
tivity log produced during FAVS processing to an appropriate file.

The LANGUAGE = <name> command identifies the language of the
source code to be analyzed. The possibilities for <name> are:

° FORTRAN (default)

® DMATRAN

This command must precede the START command.

The SEGMENT command causes the segment commands generated from

user commands to be written on LOUT.

The startup command terminates the library description and indi-
cates the start of processing. The command is:
START.

o

SRS A e R, o § SRR,

;

A.3 PROCESS OPTION COMMANDS

Processing steps STRUCTURAL and INSTRUMENT have option commands
which define the action taken when the process execution command is given.
The process option commands follow the START command and are followed by

the appropriate process execution commands (see Sec. A.5).

A.3.1 STRUCTURAL Option Commands

The following commands generate additional structural information

during the STRUCTURAL analysis. They are never used with any option
other than the RESTRUCTURE option.

STRUCTURAL, COMPUTE = FULL.

STRUCTURAL, JUNCTION = ON.

A.3.2 INSTRUMENT Option Commands

The following command is used to identify test case boundaries in

instrumented source code:
INSTRUMENT , TESTBOUND,MODULE = (<name>),
STATEMENT = <number>.

The <number> is the FAVS number of the statement at which one

testcase is to end and a second is to begin.

A.4 MODULE SELECTION COMMANDS

Many FAVS commands require specification of the particular modules
upon which computations are to be performed. Some of the standard print
commands require this, for example. Commands are available to select a
single module, a subset of modules, or all modules in a library. If two
or more versions of a module appear on a library, the last one entered

on the library will be selected.

A.4.1 Single Module Selection

The following command selects a single module:
MODULE = (<name>).

B, o S———r

0 O 5 s s A b e sk 1 %
r S m‘)‘ay;_l.‘ . .4*'*?%‘}:%)

All subsequent commands (if they refer to a specific module) are applied

to this single module. There can be any number of MODULE = commands.

A.4.2 Selected Module Iteration

The following sequence selects a subset of modules, by name, and

iterates a block of commands (which cannot contain another iteration)
once for each specified module:

FOR MODULE = (<name>,<name-2>,...<name-n>).

(commands)

END FOR.

A.4.3 All-Modules Iteration

The following sequence selects each known module within the cur-

rent library and iterates a block of commands (which cannot contain ano-
ther iteration) once for each known module.

FOR ALL MODULES.

(commands)

END FOR.

A.5 PROCESS EXECUTION COMMANDS
The process execution commands for the FAVS processing steps are:

ASSIST,REACHING SET,TO = <DD-path number>,
FROM = <DD-path number>,{ITERATIVE}.

BASIC.

BUILD,DMT .

BUILD, PREDICATE.
BUILD,PARMETERS.

BUILD, CROSS.

DOCUMENT , BANDS .

DOCUMENT , BANDS = <number>.
DOCUMENT , COMMONS , PRINT = FULL.
DOCUMENT , COMMONS , PRINT = PART.
DOCUMENT , COMMONS , PRINT = SUMMARY.
DOCUMENT , CROSSREF .

DOCUMENT , INVOKES .
DOCUMENT ,MATRIX, LIBRARY .
DOCUMENT, READ.
INSTRUMENT.

STRUCTURAL.

Each of these commands (except for BASIC and BUILD, PARMETERS and BUILD,
CROSS and DOCUMENT,CROSSREF) causes execution of the processing step on
a previously selected set of modules. The exceptions cause the process-

ing to apply to all the modules in the library.

A.6 STANDARD PRINT COMMANDS

The standard print commands provide the means to generate formatted
output of FAVS internal tables. These print commands are universal; i.e.,
they can be used in any processing step. The standard print commands are

of the form:
PRINT,<table-name>.

where <table-name> is DDPATHS, MODULE, or PROFILE. For a PRINT command
to be accepted, a set of modules must have been selected with a module

selection command (see Sec. A.4).

T ——

A.7 RUN TERMINATION COMMAND
A FAVS run terminates on the END command, which provides for cor-

rectly closing any files.

The run termination command is:
END.

A.8 ORDER AND USE OF THE SEGMENT COMMANDS
The segment commands should be used in the order in which they
have been presented in this section. The LIBRARY commands (if present)

are first, followed by the start-up commands, etc. The run termination

command is always the last command.

v J
at R T L -
¢ A [’&"}_;..1’- "y

Each of the twelve different FAVS reports that can be generated by
the OPTION command is listed along the top in Table A.l. On the left
side are listed the segment FAVS commands in the order they are needed
to generate the report named at the top of the column. For example, if
p the user wants only two of the five reports produced by the DOCUMENT op-

tion, this table shows which segment commands must be used and the order

in which they should be placed.

The module selection commands must be supplied by the user. (See
Sec. A.4.) A module selection command is required only for following E

commands:

BUIL,DMT.
BUIL,PRED.
STRU.
PRIN,MODU.
PRIN,DDPA.
STAT.
DOCU, INVO.
DOCU, BAND.
PRIN, PROF.

R

e gy

W

. v "y
- S hlly S S W5 D e ale s L
SR < & v Risgol X SRR,

s
ONTHOVaY | LNIHOELSNI

o) BA AR

o

INIHNO0A

*pal1da[Is ulaq sey RNVNEIT Q10 10 LHVISIY J§ 2@8n Jou 8!

—_——t

AVIHNS ——|

1811

® L]

© aN3

st =0L*OVAY 1SSV

*S0E)*NO0a

*avay‘nnoa

*WANS=X1¥d ‘K02 1000

*1¥Vd=N1¥d ‘W00 * 1004

“¥EIT ¥4IV Nd0a

3084 ‘K1¥d

*anNve ‘ 00d

*OANI “No0a

“1v1s

‘Vaaa“NIed

*NAOK“N1¥d

LR

*so¥n ‘1108

“Wavd‘110€

..auxg.quun

*1ka1108
¥

"1sve
*

"HV1S

SISATVNY
13s
ONTHOVIY

SNOILIN1d3a
HLVd-aa

o

SISATVYNY
J11VLS

SINIWA1VLS
avay

JIVds
NOILVOOANI

SaNve
NOTLVOOANI

AONIYIIAd
S5080

(aZONVIING)
X141V
SNOIWOD

3171404d
INIWALVLS

:31oday jo auepyN

XTYLVK
dDON3IAN4d3a

X1V
SNOIROD

AAVda I

SI¥0ddY¥ SAVA ALVYINIO Ol AIVINDIY SANVWWOO INAWOIS
1°V 37149VL

ONILSIT
INIRILVLIS

$SANVIZHOD
INZH2IS

RS LR AEETI A T B, § 8

e N

OISO etis o v

P P it]

APPENDIX B

DETAILED DESCRIPTION OF FAVS SEGMENT COMMANDS

ASSIST,REACHING SET,<specs>. ASSIST,REACHING SET,<specs>.

Description
This command is used to analyze the flow required to reach a par-

ticular DD-path according to the items in hte specification list. The
reaching set consists of all DD-paths which flow between the beginning
and ending DD-paths. There are three types of specifications which may

be present in any order but must be separated by commas:

TO = <DD-path number>
FROM = <DD-path number>
ITERATIVE

/

Tﬁg path for the reaching set (i.e., the target of flow) is named
by the (required) specification TO = <DD-path number>. In the absence
of the FROM = <DD-path number> specification, the flow is assumed to
start with the first executable statement in the module. The FROM
specification allows the user to identify the DD-path where flow starts.
The analysis begins with the first executable statement on the DD-path.

The (optional) ITERATIVE specification allows the user to control
the set of DD-paths in the analysis. If ITERATIVE is not specified, all
flows which include iteration are suppressed in determination of paths
of control. If ITERATIVE is specified, the flows include iteration.

Rules

X, Maximum of 100 DD-paths per reaching set path.
2. Maximum of 100 outways per decision.

3. Maximum of 1600 DD-paths per analyzed module for

reaching set.

4. Maximum of 3200 statements per analyzed module for

reaching set.

5. Maximum of 200 statements in reaching set.

T

Rbal sl g e b

Thety At
2 r*'.'»"ﬁ!“ﬁ.}.;”"‘j R

ASSIST,REACHING SET,<specs>.

Sample Output

RCACHING SBT ANALYSIS

NON=ITERATIVE REACHING SET FROM DD=PATH
COPATHS IN REACHING SET
8 9

3 24 25

ASSIST,REACHING SET,<specs>.

SUBROUTINE CLASS (K, ITYV)

8 T0 DD-PATH 40

1 11 12 13 14 15 17 18
26 27 28)6 39 40 4 4« 0

SOURCE CODE IN REACHING SET

(1) e JCH = K (J)

74 (1) e« 1P (JCH .EQ. KBLNK) (6- 9)

% (2) « o COTO 26

76 (1) o IF (JHOLL) 12, 12, 7 (10~ 12)

77 (1) 2 « DOBL =1, 10

78 (2) e « IF (JCH .EQ. KDEC (L)) (13- 14)

79 () ¢« + .« GOTO 10

8e (1) 8 « CONTINUR ' (15- 16)

81 (1) « IF (JHOLL = 1) 11, 11,9 (. 17- 19)

64 (1) 10 e JHOLL = JIOLL + 1

85 (1) « GOTO 25

4s (1) 11 o JHOLL = @ ;

87 (1) 12 « IF (JCH .EQ. KLPAR) (22- 2))

88 (2) « o GOTO 20

89 (1) e« IF (JCH .CQ. KRPAR) (24~ 25)

9% (2) « o GCTO 18

91 (1) e« IF (JCH .EQ. KCHMA) (26- 27)

92 (2) ¢« + GOTO 22

93 (1) « IF (JCH .EQ. KEQ) (28~ 29)

94 (2) « o+ GOTO 23

100 (1) 18 . JSH e JSW ~]

101 (1) « IF (JSW) 19, 19, 28 (34- J6)

184 (1) 20 o JSW = JSW ¢+ 1

1e5 (1) 21 ¢ JHOLL = }

166 (1) + GOTO 25

CALG BEE oy B
(1) . SW ’ ’

109 (1) 24 ¢« JEQ =1 bl

110 (1) 25 « IP (ISW) 26, 26, 27 (43- 435)

111 26 CONTINUE { 46- 47)

THIS PAGE IS BEST QUALITY PRACTLCABLE

MOOPYFWISHENDDC P

BASIC BASIC

Description
The BASIC command causes BASIC syntax analysis to be executed. The

action performed by the BASIC command is the construction of a new library
containing a module descriptor block, a statement descriptor table, a
statement table, a symbol locator table, and a symbol table for each
module on the INPUT file. The output is written on the file LOG and may
be obtained by using the command FILENAME, LOG = <file name> to equiva-

lence files.

Rules
X. See syntax comstraints in Sec. 4.2.

2. Maximum of 250 modules can be on the library.

Sample Output

FIRST PASS OF NEw MOCULE BEGUN

CLRREANT CPU TIME = 0262

SOURCE TExXT MOCIFIED FOR SYSTEN INPUT

FIRST PASS GF WNEw MGCULE COMPLETEU

CLRRENT CPU TIME = 266 TINE SINCE LAST CHECK = 2003

SECONC PASS OF NEw MCDULE BEGLN

CURREAT CPU TIME = 266

SMATH > 1S MOCLLE BEING PRCCESSED

STATEMENT BLOCKS AND STATEMENT CESCRIPTOR BLOCKS GEWERATED

SECONT PASS CF WEW MODULE CUMPLETLOD

CLRRENT CPU TIME = 0284 TIVME SINCF LAST CHECK = «018

)]

THIRD PASS OF NE# MOCULE BEGUN

CURRENT CPU TIwE = o284

STMEOL TABLE BLOCKS CGEINLRATED

INTER-STATEMENT PCINTER GENERATED

TMIRD PASS QF NEW mOOuLE COMPLETED

CURRENT CPU TIME = «290 TIME SINCE LAST CHECK = «007

e e ol

R i A - - LN SR e R e N SRR
Al) 3 NI Tt 2 T

BUILD,DMT . BUILD,DMT .

Description
This command builds a Dependent Module Table for each module

specified by a module selection command. The table contains the names
of modules invoked, the statement number of the invocation, the number
of times a module is invoked, the length of the invokee's name, and

whether invokee is an internal procedure (i.e., a DMATRAN BLOCK).

Rule
This command must be used with a module selection command; other-

wise, the table isbtuilt only for the last module on the library.

This command must precede any of the processing execution com-

mands with one exception; it should follow the BASIC command.

i

BUILD,PREDICATES. BUILD, PREDICATES.

Description
This comamnd builds tables containing information about the pred-

icates in a module; i.e., the length and origin of each predicate.

Rule
This command must be used with a module selection command; other-

wise, the table is built only for the last module on the library.

This command must precede any of the processing execution com-

mands with one exception; it should follow the BASIC command.

B~6

BUILD,PARMETERS. BUILD, PARMETERS.

Description

This command generates information about parameters (number, lo-
cation, etc.) and stores it in tables in the database library. All

parameters encountered in any of the modules are included in the table.
Rule
This command must precede any of the processing execution commands

with one exception; it should follow the BASIC command.

No module selection command is required.

i
E
L
:
E

BUILD,CROSS. BUILD,CROSS.

Description
This command builds the Svmbol Cross Reference Table which lists

symbols encountered in any of t..: modules on the library. The following

information is stored with each symbol:

Original symbol entry

Names of modules containing the symbol
Statement numbers where symbol occurs
Use of symbol

Rule
This command must be the last BUILD command if any others are
used. It follows the BASIC command, but precedes all the other process-

ing execution commands.

No module selection command is necessary.

DOCUMENT , BANDS . DOCUMENT , BANDS.

Description
This command has two forms:

DOCUMENT , BANDS. or
DOCUMENT ,BANDS = <number>. (DEFAULT <number> = 5)

The outcome of this command is a '"'snapshot' of the position of the
selected module within the intermodule hierarchy. The sample output
shows an example of the BANDS report. To the left of the selected
module is shown the structure of the calls to the module} to the right
of the selected module is shown the invocation structure emanating from
the module. The number of bands is the width (in each direction) of the
structure displayed. Up to five bands may be displayed on this report.
This report is useful in determining the extent of intermodule dependence
to several levels. Modules which are called from only one other module

are potential candidates to head a segment for overlay purposes.

The modules listed under column -1 call the selected module di-
rectly (STRUCT in the sample output below), while the modules shown

under column -2 call those in column -1, etc. Modules listed under
column 1 are called by the selected module (CONT, KEMPTY, and PUTFIN
in the sample output), while those under column 2 are called by those

listed under column 1, etc.

Rule
Maximum bandwidth is 5.

Sample Output

IAVOCATION 8aK0S SUBROUTINE FULCON (LABEL)
76 LEvEL 2
LaveL -8 -8 -3 -2 -1] 1 2 3 L} L}
FULCON
sThuct COnY
CONTAL MOVERD
REwPTY
Rcowp
PUTFIN
INCENT
ROvERD
RCVEwV
1 N SPRYWD
{ B-9

TR T

DOCUMENT , COMMONS , PRINT=FULL. DOCUMENT , COMMONS , PRINT=FULL.

Description
This command generates two matrixes. The Library Common Block

Matrix lists all the common blocks encountered in any of the modules
in the set that was analyzed. An "X" indicates that at least one of
the variables in the common blocks was used. An "O" indicates that no

symbol was ever referenced in the module.

The Library Common Symbol Matrix lists all the symbols in each
of the common blocks. The number of the common block (as assigned in

the first matrix) is printed to the far left of the name of the symbol.

Sample Output
The output from this command includes all COMMON symbols; thus the
report generated by the command DOCUMENT ,COMMONS,PRINT=SUMMARY (page B-12)

is a subset of the PRINT=FULL option.

The FULL option report is used to identify COMMON variables which
can be removed from COMMON blocks. The entries in the COMMON symbol
matrix for unreferenced variables are "0's'" for all modules containing

the COMMON block.

E B-10

SO

DOCUMENT , COMMONS , PRINT=PART

Description

This report lists all modules and all common blocks encountered.

DOCUMENT , COMMONS , PRINT=PART .

An "X" indicates the presence of that common in a module.

Sample Output

CCMMONS MATRIX

L1BRARY COMMON BLOCK MATRIX

c
0
]

]
0
N
N
o]

ra-<2z2on0

-“Z00

FOX>XxM

on0rc ,m

VMOENOOEBDN

*e *
* s MODULE »
 d . -
* s »
* = -
* * =
* » =
* * =
* COMMON s =
* =8
s ACCTNG *
* CARODS *
* CChSTN »
* FORTRN *
* INTERN »
* INVOKE *
* RECNIZ »
= SgSE =
* STACK *
* STATE »
* STYPE s
* TRACE *
* USEOPT ®
* WARNIN *

3¢ 3 3 I I B I X N X XK X X X

-
MVPSs=
ACUT =
1 VTR=*
NEFU=»
" TC=
CNT =

.

»

*

®

*

X X =

X X

X X =

X =

*

*

X =

X X =

X *

b 4 .

X X #

*

£ 5

-

e

o o

——

DOCUMENT , COMMONS , PRINT=SUMMARY DOCUMENT , COMMONS , PRINT=SUMMARY .

Description
Two matrices are produced by this report. The first one lists all

common blocks encountered in any one of the madules in the set which
was analyzed. If at least one symbol was used, it is indicated with an
"X". If no symbol was ever references in the module, this is indicated
by an "0". Routines from which a common block may safely be removed

are easily found.

The second matrix lists only the symbols which are used by some
module; the number of the common block in which it is found is printed i
to the left and corresponds to the number given to the common block in
the first matrix. This report is an excellent aid when changes are

being made to a software system.

Sample Output

LIGRARY COmMON BLOCK NATAIX LEGRARY COMNON STREOL RATALX
. .
€ oo . . . C oo (] . °
0® e FOCULE e CCECFRmpPPSo 00 e MOORE ¢ CCEFRMPPSE
Re o S 00XVEACULT e ve o C00xvVEACUT®
Re o S NNALNLIYTRES® ne e ChNALMIVTIAS
L . e T TPCPNLFUS 0 . CYTRCPNEFUS
LI L] SR PUOT. alCoe Ne . SR POT. sTCoe
L ¢ oL LNY CNTe . e SL LAY CuTe
ke ¢ e . ° Ne PR) . PY
0 © CoPNON o ® . P O ® gYNBOL o o 5 Y
] LT3 5 . L] (1} . 'Y
. .

3 8 ACCTAG e @ . . a e jecF sy 0. .
2 o CARDS *x e . 33 © InCON s 00 'N uoe
8 e CeNSTA e QX xe Txe Y e InSTax e ¢ . Xe
9 o FCRTuN e C X . 20 10 o JTYPC P 0 . oV e
9 O INTEAN o 3 o X0e A8 @ pacty s CX . vVoe
& o IAVORE e C % xe S O KCAGTH o 0§ . X0e
T e RECNIZ e ¢ o . A% © xFIN s 0V - voe
[{19 e ¢ . . 23 ® KoMFIN 2 0 O 0 Cue
Y o STACK e . Xe 3 o KSINT ey 0 . Vo
10 ® STATC o X . 0O)e Ale & Lagll .0 X . cue
11 o SyYPE e o . o s v LEx ecu Ve WU
12 o 1nACE *x . x ® 10 ¢ LENGTH o 8 0 & cCoe
13 o USCoPT e x 0 O XXe 10 ¢ LIABLG e o e . 00
16 ¢ RARNEA e 0 . ® 30 © LIAENC P 9 & 00e
A30 o (387 ° 0 0 . oVe
10 & \PCINT o C 9 & Que
LLecno AY o LSTACK e O . xe
40 * LTYPE (R} 0 dve
- 13 ® LUNFOR ¢ 0 0 0. uoe
CCrrOong vs. vODULLS 13 @ LLAOUT e L O 0. Goe
etcevcnsccccvanccaa 30 & pENGTH e C (- I~ ous
R 2> AT LEASY CAE 3YPE0L MEFEREACED 312 o NALTER o C & v e
0 &> NG STPBOL EvER NLFLNENCLE As & hAFLY eq . e
S S AFATER e 9 s 00
STREOLS V8. PGCULLS 33 ¢ MINONTY o G O 0. RO
etgscane ecscseccacas 9 o MIKES Y} 0 & GOoe
X > SYPBOL SCT ANC USED $ e.moeE *0 . Xxe
0 8> SYPHOL Neviw SET ON USLOD AS o NCPLOK o O . s e
S 2> SYWOOL SLT OnLY A% ® AOINV e 0 . xe
VU 8> SYPCOL LSED CrLY 30 ® NSTATE e x 0 . 00

€ &> SvrkOL ECLIVALENCEC (CYERLAID) ONLY
A 8> SYPEOL 1S AN AHRAY

ALLTY PRACTICABLAE

EST QU
THIS PAGE IS B T0DDC ——
FB0M 00PY FURBLSH B-12

TR

DOCUMENT , CROSSREF. DOCUMENT , CROSSREF.

Description
The outcome of this command is a cross-reference listing of names

in the entire library and their usage. The names listed are all items,

files, switch names, labels, and subprogram names. {

Rule
A maximum of 100 modules can i:: used in cross-reference mapping.

Sample Output
CHOSS REFERENCE

e bt

GENERAL CROSS REFERENCE LISTING
MCDULES INCLUDED <=

CONTRL
CONT
EXAMPL
FULCON
KEMPTY
MAIN
MOVEWD
PUTFTN
STRUCT
SYMBOL MODULE USED/SET/CEFINITION (* INDICATES SET, O INDICATES DEFINTTION)
ACT1 CONTRL 172
ACT2 CONTRL 174 .
ASSIGN STRUCT 180 ,
B86SCAN CONTKL 168
CUNTRL CONTRL 1
MAIN 2
CONT CONT 1
FULCON 14
STRUCT 86 103 124 153 165 202 236 258 262 292 303 306 345
ENDER CONTRL 183
< ERROR STRUCT 53 107 111 113 128 130 169 171 213 217 219 o40 244
EXAMPL EXAMPL 1
MOVEWD 33
FULCON FULCON 1
STRUCT 84 101 122 137 160 199 234 255 275 298
GEMASS STRUCT 341
GENGO STRUCT 369
GENLAR STRUCT 73 81 85 98 102 123 139 141 149 152 161 164 198
281 283 291 299 302 305 339 340 357 360 371
GENVAR STRUCT 179 208
GETSTHM CONTRL 164
6oT0 STRUCT 82 99 150 162 196 232 278 300 343 358
IARRY1 MOVEWD 1 23C 29»
IARRY MCVEWD 1 22C @29
ICONT CONT 240 25C 250 250 25D 250 250 2sC 2%0 28
1E0F CONTRL 290 165 180
KENPTY 50
i 1ERROR STRUCT 92¢ 93 94s 9% 110 120% 121 127 158« 159 168 190+ 191
‘ 243 253% 254 265 296+ 297 309
}
pEST QUALITY PRACTICABLE
E e ;smusm 700G ™
FROM OOPY
e RN A VR G R BT R a4 R ‘

- » e
G " " 3 .
PO

PR

TR

DOCUMENT , INVOKES . DOCUMENT , INVOKES.

Description
The outcome of this module command is a report which shows (1) the

invocations of the selected module from all other known modules, and (2)
the invocations within the selected module to all other modules. The

sample output shows a report produced by this command. For each module
the FAVS statement number of the invocation and the source text for the

invocation are shown.

Sample Output

INVOCATION SPACE SUBROUTINE CONT (LABEL)

INVOCATIONS FROM WITHIN THIS MOCULE

LAY L P P LI R PR L L R T LR L L L L Ly

MCDULE MOVEWD
SIMT 3 26 CALL MOVEWC (5 4 1 4 LABEL + 1 o+ KABEL)
SIMT = 28 CALL MOVEWD (8 4 1 + ICONT o 1 4 KFTIN)

IAVOCATIONS TO THIS MODULE FRCM WITHIN LIBRARY

MODULE FULCON

SIVMT = 14 CALL CONT (LABEL)
MCDULE STRUCT
SIMT = 86 CALL CONT (LAB)
SIMT = 103 CALL CONT (LAB)
SIVT = 124 CALL CONT (LA3)
SIFT = 153 CALL CONT (LAB)
SIMT = 165 CALL CONT (LAB)
STMT = 202 CALL CONT (LAB)
SIMT = 236 CALL CONT (LAB)
STMT = 258 CALL CONT (LAB)
SIMT = 262 CALL CONT (LaB)
SIvMT = 292 CALL CONT (LAB)
SIMT = 303 CALL CONT (LAB)
SIFMT = 306 CALL COnT (LAB)
SIMT = 345 CALL CONT (NAMEL)
SIMT = 361 CALL CONT (NAMEl)
SIMT = 373 CALL CONT (NAMEL)
g QUALETY PRACTICABLS
gr1S PAGE IS ooy 4ED 100D —
lﬂﬁlOﬂF!]umx

B-14

3
%
1
1
;
.
<

T T L R I S

DOCUMENT ,MATRIX, LIBRARY. DOCUMENT ,MATRIX,LIBRARY.

Description
This module report shows all invocations, along with the statement

numbers, to and from the specified module. It is useful in examining

actual parameter usage.

Sample. Output

LIBRARY DEPENDENCE MATRIX

XS XR AL SR XA X RS EE SRR SRS R EG R X R R P EREEEE R E LS ERES SR

s* INVOKEE = * .
T sCCEFKMMPS*AAABEEGGGGGGIIIIIIIKKMNNNNPSY &
L *00XUEAQUT*CCSGNREEEEEOFFGNNINWCLOADEEUPE «
» * sNNALMIVTIR*TTSSORNNNNTTCSRDOIIOAVMSWwTRR S
* * *TTMCPNEFU%12ICEOAGLVSOACGOELTTMSEQCLPIYBS
* * #R POT wTCx GARRSCAAT S UNEAHPSWBAAAFwWA=x
*] #L LNY ONT« NN S BRM E PTVLN 1U NBG DT«
* s % » *
 J * % *
* INVOKER »=¢ * *
BOESX SR REERE LSRR AR R XX E KSR R R SRR R ARG S LSS R LXK S &
s CONTRL % XxXX XX X X X XX =
s CONT * & X = »
s EXAMPL £ % » &
& FULCON * X X X =% *
* KEMPTY * * » X * s
s MAIN X *] * 1
* MOVEWD s X s % *
s PUTFTN * X* = X X X =
& STRUCT = X X X®x X XXXXX XXXX X X X X X XXs
t‘f"ttt‘.‘ttttl‘tt‘#tt*lttt‘ttttt‘ttt‘Ottttttt#tttt

THE FOLLOWING MODULES ARE NOT INVOKED BY ANY MODULE ON THE LIBRARY
NAIN

THE FOLLOWING MODULES DO NOT INVOKE ANY MOODULE ON THE LIBRARY
EXAMPL KEMPTY

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNLSHED 10 DDG

B-15

DOCUMENT,, READS . DOCUMENT , READS .

Description
This report provides a list of all the program modules in which a

READ appears. The source statements-.are reproduced along with the
defining FORMAT. This report may be used to locate all the points where
variables are being input to the system.

Sample Output

READ STATEMENTS

THE FOLLOWING MODULES CONTAIN READ STATENENTS

GETCRO
GETINS

READ STATEMENTS AND ASSOCIATEC FORMATS

e®e GETCRD =ee

16 READ ¢ LUNINs 1) (LCARD (I)¢ I % 1, 80)
17 1 FORRAT (80A1)

e*e GETINS oo

'™ READ (Se 1) C NUN (I)¢ I = 3o NOPTS)
1 1 FORMAT (1215)

P

END. END.

Description
After the operations indicated by the contents of the command

file are complete, FAVS must be "shut down" by use of the following

command :

END.

The END command must always be the last FAVS command. The actions
which occur as a consequence of this command are important to the FAVS
user in only one regard--when the library is completed and is to be
saved for future runs. The wrapup sequence provides necessary infor-
mation sbout the contents of the new library. The sample output shows E
the standard wrapup output. This report contains the Module Descriptor

Table, library information, and Interface Use Statistics.
The wrapup output is written on the file LOG. By using the
FILENAME command to equivalence the LOG and OUTPUT files, the user may

obtain a printout of this information.

Rule

This must be the last FAVS command.

B-17

A T AP L G A 1T R SR AT e
ey

AR, Tt SRR i

END. END.

Sample Output

STSTIN WRaPLP, .. 4
RUOULE SCSCRIPTOR BLECKS A4S THEY ARE CUMRENTLY KhOeheo 4
C LANGUAGE cuee 187
N0, Wawg Teee L4 OIALECT pamenT STRTS STATS CXEC ARGS CATRS SYHs OCPS INVOXCS LCNG MANC
3 BSOAT SUBROUTIAC TYPLLLSS FORTRAN . 20 19 3 2 1 12 1}]
LI8RARY BCACLR ===
n00C V¥ ACCCSS i
FRAGPENT S12C
CIIRARY $12€
NyxgCA CF R3CLLES
WyxgCR CF CATRICS
NUNSLR CF FRAGMEATS
WUAGCR OF TOKEAS .
INTEAFACE USE JTATISTICI.e0e
W, st TYee $COPC GCTWROS [13{ 1Y) PUTurDS PUTBLKS * SCARCHES ACTIVETLS swITEMES FLYCHLS
1 Pehe SYS o7 . 0 [] . [] .
[Plan SVS 17 [} (1Y [} [[} (] (]
3 PiAs 513 ° 3 (] 3 U 3 2 2
. PCAN SYS 192 (] 260 . 223 1 2 ?
) PLRN svs a7 [} 20 268 . 1 7 2
. Peln svs] . [} 260 . 3 2 2
» PLAN svs .] (] 3 [} (] . [
[PLRN sTS ° . . [] (] 0 ° °
. PLAR s . . [[} [} . [} 3
10 Pikp T8 [} . [(] 0 L] [[
n Tnre svs] 2 [} 2 . 3 1 1
L PLan L11] (] [(] . [] 3 1 1
n PCAN aCO 333 120 (1) ey 3 3 3 1
0 PERY #CO ° ae [3 . .) 3 1
an PLAN wcO [3 " [0 by 3 3 1
) PLRn “Cco] « [} 2 [1) 1
” PLan ned . [} [} [} [L] (] [
£ PLAN ned [] [] (]] []) 1 1
58 PLAR "ot) (] 13 [] (] 1 1)
» wre »eo 3 ’ 10 L 29) 3 1
s twre wcS [3 . .) [1 Yy 1
% wree neo s [} L] [S 1) 1
” TEvp nQO L1} (] 27 9 [] 3 1 1
“n tre w00 . 1 [} 1] [1 3 3
EY fe LTy 20 70 71 268 37 n 2
CAROA PROCESSING STATISTICS .0
LI] SCVERITY LEVEL
B | CARCAS
0 FATAL CRRGA
1TY mcnwsh!
15 BEST QUAL
! TH1S PAGE 70 DDC e
oM OOFY FURNLSHED 10 DS
‘
B 4
B-18 2

o

END. (Cont.)

Output Description

S LN -

10.
11.
12.
13.
14.
15.

The Module Descriptor Black (MDB) summary shown in the sample
output, reading left to right, gives the following statistics:

Module number on the file

Module name

Type of module

Mode of module (if function)

Language dialect of module

Parent module (if nested)

Statements in module

Executable statements in module

First executable statement of module
Number of parameters in module calling sequence
Number of entry points of module

Number of symbols in module

Number of DD-paths in module

Number of external invocations in module

Long name (if applicable)

The library header report lists mode of access (new or read), size

of the library and number of modules, entries, fragments, and tokens.

< The Interface Use Statistics shown in the sample output includes
the number and name of the library, the type of access (permanent or
temporary), the scope of the library (system or module), and miscel-

laneous access information.

B-19

B e SR e

p——— s il e e

END FOR. END FOR.

Description
This iteration command concludes a block of commands which are

repeated for each specified module. There are two sequences of commands
which select a number of modules and iterate a block of commands (which
cannot contain another iteration). The two forms of command iteration

are:

i

(1) FOR MODULE = (<name1>, ey <namen>).
(commands)
END FOR.

ek

(2) FOR ALL MODULES.
(commands)
END FOR.

Rule

Maximum of 100 modules selected in command iteration loop.

FILENAME,<file>=<file-name>. FILENAME,<file>=<file~name>.

Description
This command is used to reassign files. At installations where

file numbers are used instead of names, the user should substitute the
appropriate numbers. Appendix D has a chart with default assignments

for each installation. The two forms of this command are:

FILE,LOG=<file-name>.
FILE,PUNCH=<file-name>.

The use of this command is optional. When it is present, the
wrapup reports generated by the END command will be written on the

output file; otherwise, these reports are not printed.

Rule

The only command that may precede this is SEGM.

B-21 i

AD=A065 447 GENERAL RESEARCH CORP SANTA BARBARA CALIF F/6 9/2 N
FORTRAN AUTOMATED VERIFICATION SYSTEM (FAVS). VOLUME II. USER'S==ETC(U)
JAN 79 D M ANDREWS, R A MELTON F30602=76=C=0436

UNCLASSIFIED RADC=TR=78-268-VOL~2

END
DATE
FILMED

4-79

DDC

T

FOR ALL MODULES. FOR ALL MODULES.

Description
The following sequence selects each known module on the library and

iterates a block of commands (which cannot contain another iteration)

once for each module:

FOR ALL MODULES.
(commands)
END FOR.

Rule
Maximum of 100 modules selected for this iteration command.

B-22

W

LA RSO R i . "'w
g i T ¢
v T, o S A
¥t Wt .

INSTRUMENT . INSTRUMENT. ﬁ

Description
The action performed by the INSTRUMENT command is to write probed

text statements to the PUNCH file. The INSTRUMENT command produces a K

small report as shown in the sample output.

Rule

A maximum of five testbounds may be specified.

No- FORTRAN labels between a range of 7777 and 89%9.
No routines named SPROB1 and SPROB2.

The maximum DD-path number is 99399.

Sample Output

DU~PATH INSTRUMENTATION OF MOCULE BEGUN
CURRENT CPU TIME = 0194
DD~PATH INSTRUMENTATION OF MOCULE COMPLETED

15 BEST QUALLTY PRACTIC
FURNKLSHED

B-24

S . - - e

¥

R e

FOR MODULE = (<name,>... FOR MODULE = (<name1>...

1

Description
The following sequence selects a number of modules, by name, and

iterates a block of commands (which cannot contain another iteration)

once for each specified module:

FOR MODULE = (<name1>, Sahaly <namen>).
(commands)
"END FOR.

Rule

A maximum of 25 modules can be specified.

B-23

A

INSTRUMENT, PUNCH, PROBE. INSTRUMENT, PUNCH, PROBE.

Description
This command causes the data collection routine, SUBROUTINE SPROB2Z,

to be written on the file LPUNCH. This routine is called by the software
probes that are inserted into the user's program by the OPTIQON=INSTRUMENT.
command or by the standard command, INSTRUMENT. During execution, the
module name and probe number are recorded on the trace file LTEST each

time this subroutine is invoked.
Rule
This command must be used with the INSTRUMENT standard command to

have the data collection routine written on LPUNCH.

Sample Output

SUBRQUTINE SPROB2 76/716 0PT=1 FIN 4.6+4433

1 SUBROUTINE SPROB2(MODULEISTMTIEXP)
INTEGER MODULE(2)
DATA LIEST/Z12/
IDUm = IEXP
] G070 1
ENTRY SPR(QB1
I0UM = 0
1 CONTINUE
* WRITE(LTEST) MQOOULE.ISTMT,IOUM
10 RETURN
END

1§ PAGE IS BEST QUALITY PRACTICABLE
™ iUBﬂISHﬁDTQDDQ

FROM COPY ¥

SRS

e

= Sl —

iy kel ' Y ‘ . - g

INSTRUMENT, IOPROBE=ON. INSTRUMENT , IOPROBE=ON.

Description
This command causes FORTRAN code to be generated for INPUT and

OUTPUT statements so that the values of variables listed in these state-

ments will be printed out in the proper format.

Any variable whose type is not listed will not be printed. The
syntax to provide type information is:

INPUT (/<type>/<variable list>,/<type>/<variable list>,...)
OUTPUT (/<type>/<variable list>,/<type>/<variable list>,...)

<type> may be REAL, INTEGER, HOLLERITH, or LOGICAL or the respective
abbreviations for each, R, I , H, or L . <variable list> may contain
non-scripted variable names, array names, individual elements of an
array, or an array subrange. The INPUT and OUTPUT statements are turned
into comments by FAVS, so they may be left in the code when the instru-
mented code will be compiled. See Sec. 5.6 for further details.

Rule
The type (REAL, INTEGER, LOGICAL, or Hollerith) must be specified
for each variable listed in an INPUT or OUTPUT statement.

et sy P s A LI o A ST ML v =g

INSTRUMENT , TESTBOUND, <specss . INSTRUMENT , TESTBOUND < specs .

Description

This command is used to identify the end of one test execution test
case and the beginning of another. It often is desirable to obtain the
coverage analysis results for different parts of the instrumented source
code. For example, the coverage within a single module might be of
interest in addition to the coverage over an entire set of modules. This
INSTRUMENT ,TESTBOUND command could be used to define the beginning of a
new test case at the beginning of the routine and the end of the test
case at the end of the routine. When the instrumented code is executed,
the coverage within this routine would appear as a separate test case;

and, in addition, it would be included in the overall coverage results.

The two types of specifications which must be supplied with this

command are

MODULE = (<name>) The name of the module in
which the test boundary is
to be located.

STATEMENT = <number: The FAVS number of the state-
ment at which the test boundary
is to be located.

INST,TESTBOUND,MODULE = (<name>), STATEMENT = <number>.
Rules

1. A maximum of 5 testbounds may be specified.
2. This command must precede the INSTRUMENT command.

B-27

LANGUAGE = <name>. LANGUAGE = <name>.

Description
This command identifies the language of the source code to be

analyzed by FAVS. The two possibilities for <name> are as follows:

] DMATRAN
e FORTRAN (default)

Rule
This command (if supplied) must precede the START command or any
OPTION command. It is not required with OPTION = RESTRUCTURE.

Gt o

MODULE = (<name>). MODULE = (<name>)..
] Description
i Modules are known to FAVS by their names. The following identifies
’ a specific module as the oae to which subsequent commands apply:
MODULE = (<name>).
Rule
E If there are duplicate module names in the library the module
l;- selector will choose the last one.
'z
i '
|
!
5 N
!. H
i :
? A
_ |
| -';
¥ i
‘r
|
!
B~29 :
¢
- ? ST e P i et RN D G Y - R 5 ‘*“z,4,‘-_;:-’;‘..'_""'_‘: 1‘~

NEW LIBRARY = <name>, NEW _LIBRARY = <name>.

Description
This command specifies that a new called <name> is to be created-

by the current FAVS run, where <name> is any four character word. This
command is implicitly generated automatically if an OLD LIBRARY command
is not supplied. In this case, the <name> generated is blank.

Rule

If this command is used, it must precede the START command or the
OPTION selection macro command.

B-30

-

P ~

TR

OLD LIBRARY = <pame>, OLD LIBRARY = <pame>.

Description
This command specifies that an old library is to be used during

the current run. The name identifying the library need not be the same
as when the library was created.

Rule

If this command is used, it must precede the START command or the

OPTION selection macro command.

B-31

o i o]

R ST TR AN (SR E L1 e s *ran wa wp—

PRINT, DDPATHS . PRINT,DDPATHS.

Description

This command produces a detailed listing of the source statements
on each DD-path for the current module. DD-path descriptions are also
included. The report is similar in format to the report from the PRINT,
MODULE command.

Sample Output

08.PATH FEFINITIONS SUBROUTIAL CaanPL (IKFQ, LENGTH)
3 SUSROUTIAC CXAMPL (INFO. LENGTH) ;
; e DDPATH 1 18 PROCCDLAE CNIAY
[
3 g JLLUSTHATION OF DMATRAN SYATAX
s .
[] IF ¢ INFO oLEe 30 «ANDe LENGTH «GTe @) THEW

oo DOPATH 2 1S TRUL BRAMCH
e COPATH 3 1S FALSC GRauch

[N o CALL CALLER (INFO)
? ELSC
[B 1 o LENGTh s S0
bl ND1F
10 CASLOF (INFO ¢ ¢)
> ®s DOPATH & IS BRANCH OUTJAY 3
6o DOPATH 9 IS BRaLCH CUIsaY 2
o0 GOPATH 6 I8 BRAILCH OUTkAY 3
3 CASE ¢ 1%)
2.0 o LENGTH = LENGTH « INFO
13 CASC (17)
%) o OOWMILE { INFO «LTe 20)
e DOPATH 7 IS LOGP AGAIN
®e DOPATH 8 1S LOOF EsCaPr
s o o DOLKTIL (LENGTH .LE. IKFO)
16 ¢ 8 o o o INVOKE (COMPUTE LENGTHW)
ES AU }) e o o IF (LENGTh +GE. 3V) THEN
®e DCPATH 9 IS TRUL BRANCM
o DOPATH 10 IS FALSE BRAMCM
pU 2] o o o o INVOKE ¢ PRINTRESULTS)
943 e« o o ENOIF
02 e o EnCUNTIYL
. & ee DOPATH 11 1S LOOP ESCAPE
. 8o DOPATH 12 IS LOOP AGAld
I 1 e o INFO = INFO ¢ 1
20 o ENDWHILE
23 CASCELSC
LI Y] o DOMHILE (LENGTH .6T. 0)
ee DOPATN 13 IS LCOP AGAIN
®e NOPATH 14 1S LOOP CsCAPC
F L 1] o o INVORC ¢ COMPUTE LENGTN)
2% (1) o ENCuNILE
34 ENOCASE
20 BLOCK (PRINT-RESULTS)
os DOPATH 35 IS A PROCLOURL ExTRy
%3 o WRITE (6o 1) INFO. LENGTH
30 (1) b o FORMAT (10X¢2S5:202+19)
n £NcaLoCK
2 BLOCK (COMRPUTC LENGTH)
o0 DOPATH 16 IS 4 pROCIOUAL CaTRY
3 o LENGTh ® LENGTH « 10
3 €hceLack
t 1) REYURN
3 [{2]

TRIS PAGE IS BEST QUALITY PRACTICABLA
FBOM OORY FURNLSHED T0 DD o

B-32

A
PRINT,MODULE. s PRINT ,MODULE.
|
Description
This command produces a detailed listing of the source text of the
current module. The salient features are:
® Sequential statement numbers assigned by FAVS
® A number for the level of nesting of the statement
o Indentation of statements to show nesting levels
° Inclusion of DD-path numbers if STRUCTURAL analysis is per-
formed
4 Rule
g The BASIC command must be used with this command to obtain a mod-
{ ule listing. The DD-path numbers will not be included unless the
]
i STRUCTURAL command is also used.
B
! Sample Output
STATUMENT LISTING SUBROUTINE €£XaMPL (INFO, LENGTH)
NO. LEVEL LABEL STATEMENT YCX!... ‘ COPATHS
1 SUBROUTINE EXAMPL (INEO, ano;u-) ¢ 8
2 c
3 c ILLUSTRATION OF DMATRAN SYNTAX
4 c
5 IF (INFO oLE, 30 «ANDs LEWGTH +GTe O) THEW t 2- 3
6 (1) o CALL CALLER (INFO)
7 ELSE
8 (1) + LENGYH = 50
9 ENDIF
10 CASEQF (INFO + 6) (4= 6)
11 CASE (14)
12 (1) o LENGTH = LENGTH - InLFO
13 CASE (17)
8 { 1) o OOWHILE (INFO oL T. 20) t 7= 8
15 ¢ 2) o o DOUNTIL (LENGTH .LE. INFO)
16 (3) o o o INVOKE (COMPUTL 1 ENGYH)
17 ¢ 3) e o o JF U LENGTH 4GE. 30) THEN (9= 1m)
18 (&) ¢« o o o INVOKE (PRINT-KRESULTS)
19 (3) e o o ENDIF
20 (2) ¢ o ENCUNTIL (11- 12)
} 21 (2) . INFO = INFO ¢ 1
: 22 (1) v CNDWMILE
f 23 CASEELSE
24 ¢ 1) o DOWHILE (LENGTH 6T, 0) (13- 14y
: 25 (2) e o INVOKE (COMPUTE LENGTH)
E 26 ¢ 1) o CNOWHILE
27 ENOCASE
E 28 BLOCK (FRINT-RESULTS) t 15)
. 29 (1) o WRITE (64 1) ILEGy LENGTH
: 30 (1) 1 o FORMAT (1UXeI5420X¢i%)
: 51 CNGBLGCK
‘ 32 BLUCK (CO¥PUTE LENGTH) 1 16)
33 (1) ¢ LENGTH = LEHLGTH - 10
! 34 ENDELOCK
' 35 RETURN
A 36 END 5
]
| S BEST QUALITY PRACTICABLE
| B-33 THIS PAGE 7 10 DDY e
FROM COPY FURMLSHED T0

PRI AT o TEARL N B R,

MGt

— T e~

PRINT,PROFILE. PRINT,PROFILE.

Description
This report classifies each statement of a module as either a dec-~

laration, executable, decision, or documentation statement. Under these

classifications, a tabulation of the subtypes is listed.

Sample Output

STATENCNT PROFILE SUCROUTINE €xAMPL (INFO, LENGIN)

INTERFACE CHARACTCR1ISTICS 1

ARGUXENTS 2
ENTRY 3
€xty b
INTERAAL PROCEDURES 2
INVOKES L]
WRITE 1
STATErENT STATENENT
CLASSIFICATION TYPE NUMBER PERCENT
"
CECLARATION, oo
FCRNAT 1 2.8
TCTAL 1 2.8
EXECUTABLEeoe 3
ASSIGNMENT L] 11.1
CALL 1 2.0
CASE 2 S.6
CASEFLSE 1 2.8
DOUNTIL 1 2.0
ELSE t 2.8
EACBLOCK 2 8.6
EMOCASE 1 2.0
ENCIF 2 96
ENOWHILE 2 S.6
ENC 1 260
INVOKE 3 0.3
RETURN 1 2.8
WRITE b 2.8
TOTAL a3 63.9
N OECISIONvee
BLOCK 2 8.6
CASEOF 1 2.8
3 00aMILE 2 5.6
EADULTIL 1 2.8
| IFTRAN=1F 2 3.6
SUBROUTINE 1 2.0
TOTAL 9 23.0
DOCUMENTATION. oo
COMRENT 3 0.3
TOTAL 3 0.3

® T0TAL PERCENTAGE MAY BE MORE TMAN 310G EEcAust OF OVERLAFPING CLASSIFICATIONS

, 7Y PRACTICABLAE
' 7515 PAGE 18 BES? 9““1% DOG

Iﬂﬂl‘x§u ‘ B-34

SEGMENT. SEGMENT .

Description
The SEGMENT command causes the list of SEGMENT commands, generated

from the user commands, to be output.

Rule
This must be the very first FAVS command.

Sample Output

SEGM.
OPTI=LIST,STAT, SUMM,DOCU, INST, INPU, REAC.
TESTBOUND ,MODULE= (CLASS) , STATEMENT=50.
REACHING SET,MODULE=(CLASS) , TO=45 , FROM=40.

THE ABOVE MACRO COMMANDS EXPAND TO THE FOLLOWING SERIES

STAR‘

BASI.

FORA.

BUIL,DMT .
BUIL,PRED.
ENDF.
BUIL,PARM.
BUIL,CROS.
FORA.

STRU.

ENDF.

FORA.
PRIN,DDPA.
STAT.

DOCU, INVO.
DOCU, BAND.
PRIN, PROF.
ENDF.
DOCU,MATR, LIBR.
DOCU, COMM, PRIN=SUMM.
DOCU, READ.
DOCU, CROS.
INST, TESTBOUND , MODULE= (CLASS) , STATEMENT=50.
MODULE= (CLASS)
ASSI,REACHING SET, TO=45,FROM=40
INST, PUNC, PROB.
FORA‘
INST,IOPR=ON .
INST.

m?.

END .

B-35

e

o 4 S
§padg gty TSN 0 g B ¥ ¢ ¥
i “'f%b,g‘“ 5 R 4:@

E |

:

START. START.

Description é
The START command terminates the LANGUAGE and LIBRARY description |

3 commands and signals the beginning of processing.

Rule
The LANGUAGE, FILENAME, and LIBRARY commands (if used) must pre-
cede the START command. All other commands must follow it.

Sample Output

SYSTEM STARTUPees
FILE CEFINITIONS.e.

LTENMP
SIAPE

TEMPORARY SQURCE FILE.
SUURCE TaPE FILE,

LIN = INPUT FILE,

OUTPUT = OUTPUT FILE,

OLTPUY = SYSTEM LOG FILE,

OLTPUY = ERROR REPORT FILE.
ALTPUT = DEBUGGING MESSAGE FILE,
LIBNEW = PERMANENT LIBRARY FILE.
LIBWSPF = TEMPORARY LIBRARY FILE,
LPUNCH = PUNCH FILE.

LIEST = EXECUTICN TRACE FILE.
LSOURC = TEMPCRARY SQURCE FILE.

NU MOCULES CURRENTLY IN SYSTEM
LIBRARY HEADER ===

MCCeE OF ACCESS NEW E
FRAGMENT SIZE $00 ;
LIBRARY SIZE 0 |
NUMEER CF KOCLLES 0 |
NUMBER OF ENTRIES 0
NUMEER OF FRAGMENTS 0

NUMEBER OF TOKENS 234

STRUCTURAL. STRUCTURAL.

Description
The actions performed by the STRUCTURAL command are:

1% To build tables describing the graphical characteristics of
the specified module and to add them to a library.

2. To produce the report shown in the sample output.

The output is written on the LOG file and may be obtained by using the
command, FILENAME, LOG = OUTPUT.

Rule
® The maximum number of DD-paths which can begin at a state-
ment is 50.
& The maximum number of statements on a single DD-path is 100.

Sample Output

STRUCTURAL ANALYSIS CF MODULE <EXAMPL > BEGUN
CURRENT CPU TIME = 5.375

NUMBER OF DOCPATHS FOUND = 1

STRUCYURAL ANALYSIS OF MODULE CCMPLETED

B-37

e
o~

L

— r—— 4l!'E!'FFlIlMll!!llllIl!H!Ill!llllIl.!l-llllllﬂl—lﬂlll—'lllllll!

STRUCTURAL, COMPUTE=FULL. STRUCTURAL , COMPUTE=FULL.

Description
This command should only be used with the RESTRUCTURE option for

generating DMATRAN modules from FORTRAN code. It indicates to FAVS to

perform additional structural analyses.

Rule
This command must be used with, and only with, the RESTRUCTURE com- ;
mand. |

B~38

STRUCTURAL , JUNCTION=ON. STRUCTURAL , JUNCTION=ON.

Description
This command should only be used with the RESTRUCTURE option for

generating DMATRAN modules from FORTRAN code. It indicates to FAVS to

perform additional structural analyses.

Rule
This command must be used with, and only with, the RESTRUCTURE com-

mand.

e ————

APPENDIX C

COMMAND SUMMARY AND CHECKLIST

-

FAVS COMMANDS

The option selection command is required; the other commands are |
used when it is appropriate, and they must appear in the order shown.
Where an abbreviation is allowed, it appears to the right of the command.

RESTART or EXPAND REST. or EXPA.

Instructs FAVS to use a saved restart file from a

previous run. EXPAND allows additional source

TR

to be added to a restart file.
LANGUAGE=DMATRAN. LANG = DMAT.

The default is FORTRAN, in which case the command

is not required.
FILE,PUNCH=<file-name>. FILE,PUNC=<file-name>.
Instructs FAVS to reassign the punch file.

OPTIONS=<1list> OPTI = <list>

<list> may contain one or more of the following optionms,

separated by commas:

LIST LIST
DOCUMENT DOCU
SUMMARY SUMM
STATIC STAT
'? INSTRUMENT INST
INPUT/OUTPUT INPU
REACHING SET REAC
RESTRUCTURE REST

FOR MODULE = (<namel>,<name2>,....)

module selection command.

TESTBOUND,MODULE = (<name>),STATEMENT = <number>

Used with instrumentation command for setting test case
boundaries.

: REACHING SET,MODULE = (<name>),TO = <DD-path number>,

: FROM = <DD-path number>,{ITERATIVE}

: When the option, REACHING SET, is used, it 1s necessary
to specify one or more reaching sets with the above
command. The use of ITERATIVE is optional; if present,

an iterative reaching set is generated.

S

FAVS CHECKLIST

ALL OPTIONS

When using any FAVS option, compile source code to be certain it
is free of syntax errors. If the text is to be instrumented for any of

the dynamic tests, it must have executed properly.

INSTRUMENT

Perform an execution test on the program before submitting it to
FAVS for instrumentation. When a main program is not being instrumented,
a "test end" must be specified within the set of modules that are being
instrumented. The number of the exit statement in the last module which

will be executed should be supplied with the command,

TESTBOUND ,MODULE = (<name>),STATEMENT = <number>

INPUT/OUTPUT

Add INPUT and OUTPUT statements to the routines where a report on

the values of the variables is desired.

RESTRUCTURE
The command set should contain this option alone, since no others

will be processed at the same time.

REACHING SET
No reaching set processing will take place unless there is at

least one reaching set specified. The form is:

REACHING SET,MODULE = (<name>),TO = <DD-path number>
FROM = <DD-path number>,{ITERATIVE}.

Section 5 contains universal and syntax constraints as well as individual

option constraints.

Cc-4

” » TR m e o — e
2
K

I ANALYZER COMMANDS

Selection of ANALYZER reports desired must be made by the user.
The type of report is specified in the command,

OPTION(S) = <list>

<list> may contain one or more of the following options, separated by

commas :
DETAILED DETA
NOTHIT NOTH
SUMMARY SUMM

When the DETAILED option is listed, reports will be generated only for

those modules that are listed in a command,

FOR MODULE(S) = (<name,>,<name,>, ...,<namen>).

1 2
<name> is the name of the subroutine, function or program. This module

selection command must precede the OPTION = DETAILED command.

C-5

© anrmr o omeme —

b, . K i3
RRECI i S g RAE, L et e ghl

e 158 N v il

APPENDIX D

FILE DESCRIPTIONS

3

§

i
|
|

TSP WE RPN

4

PN G e Dot s

7 SEIE I

Juapuadap uofieTTEISUI (%)
ATUC 3IFIA = M ¢33FIA IO/pPUB PBAI = M/Y ¢ATUO pE31 = ¥ (E)
Teriuenbes = g fmopuer = ¥ (2)

J930eaRYd = H ‘Aieurq = g (T) :8330N
9173 Iusuwmaad 9113 °oBa3 ®EIEp
b | a9pea1 pied walsls a8vuy paed S q 31833 2qoad 1S311 1
913 @2anos
[V2 ITF3 Yyo3jeaos a8ewy pawd S H L1eaodual JELT (1) 4
9T¥3 Iuauemaad
b | a9peaa paed wa3lsLs °8euwy paed S H @2anos NI1 6
o113 @oanos
n/ 9TF3 Yo3leads 98vuy paed S H Kieiodmal A2¥N0ST 8
201nos
31F3 3Iususmrad pain3oniisai
M 20 yound wajsis 98ewy paed S H /p33jusuniisuy HONNAT L
WNWEXew JUTY
M a93utad waysds /8aa3de1eyd @ZT S H s310dax 1001 9
o1F3 3Jusuemaad
q I9peax pied walsds 98ewy paed s H anduy spueumod NIWOD1 S
M/ 9133 Yo3eaos 98wy paed s H SpUBIOD IdSN @01 Ul
M/ 9TF3 Yoeads (%) paepuels wa3isis | q - 9dedsijaom dSMEIT 4
9T¥3 Yojeads
m/y 10 3773 Juauewiad (%) paepueis wa3sis ¥ € A1eaqry MANGIT T
25vVsn NOILVOOTTV LVIRNOd (Z)miod (1) TANIONYLS GWVN EENAN
AAANTWROOZY 12 (00| doVi0lLs JAON viva 4114 a11d

NOILVTIVLISNI Oavd LV ONISSID0¥d SAVA NI @asn SIATIA
1°a I19VL

s

—

P ——————e SR R,

Juapuadap uoy3leTTEIBUI (4)
ATUO 93T7IM = M $93TIM IO/PUB pEIl = M/Y fATUO pEaI = Y (£)
Ter3usnbos = § ‘wopuer = Y (2)

I930eaRYD = H ‘AieUfq = g (]) 830N
91F3 3uauewaad 91T3J °0e13l eIEP
b a9peaa paed waisds a8ewy paed S 1 3823 aqoad 1s3al1 FA
9113 ¥danos
n/e 3713 yo3eids 28euy paed S H £iviodua) Fifchil (114
9173 3uausuiad
q aapeaa paed walsks 98euy paed s H @2anos NI S
91F3 @danos
M/ @1FJ Yyo3leads o3ewy pawd S H Lieaodway $24N0S1 8
302anos
21¥3 3Jusuewiad 921n30Nn13591
M 10 yound maisLs 23euwy paed S H \woucoe=hum=ﬁ HONNAT 6
unWIXew aUTT
" 133uzad wajsks /8133de18Yd @ZT S H s3xodaa 1n01 9
3Tyl juaueuwiad
' 19peax paed waisks 3%evuw} paed s R Induy spuenwod NIKWOD1 (4
M/d 91713 Yyo3leads o8euiy paed S H spusmod 1a3sn @091 Ul
M/ 9TFJ Yyoleads (%) paepuels wa3sis q q aoedsyaom dSMEIT z
?TTJ Yyo3eads
M/ 10 a7F3 3uaueuwzad (%) paepuels wo3sis ¥ g Lieaqyy MINGIT 1
a9Vsh NOILVOOTTV IVINI0d (Z) a0 (D 2UALONULS ANVN WEIOUN
QIANIWNO0IAY @0oay 49Vd01s (o) viva a114d aia

SNOILVTIVLSNI VWA 1V ONISSAO0¥d SAVA NI @dsn SFTId

¢°a AT9vL

e g e

e S

DMA UNIVAC 1100/42
® FAVS INITIAL RUN - CREATES A RESTART FILE

@HDG *% FAVS INITIAL RUN #**

@ASG,A YOURSOURCE. YOUR FORTRAN OR DMATRAN SOURCE
@QUSE Y. ,YOURSOURCE.
@ASG,CP YOURFILE,F40///400
@ASG,A DBM*FAVS-DMA,

@QUSE R. ,DBM*FAVS-DMA.
@ADD,P R.TEMPFILES

(OPTIONAL) CATALOG FAVS RESTART FILE
ASG FAVS, TRAN, ANALYZER, TEMPFILES

ASG TEMPORARY FILES

@xqr R.FAVS EXECUTE FAVS

LANGUAGE=DMATRAN. (OPTIONAL)

OPTION=——-—-~ . ANY LIST OF VALID OPTIONS (SEC 3.)

FOR MODULES=(LIST OF MODULES). (OPTIONAL) DEFAULT IS ALL MODULES

@EOF SEPARATES FAVS COMMANDS FROM YOUR SOURCE

@ADD,P Y.PROCS
@ADD,P Y.ELEMENTS
@COPY 2.,YOURFILE
@QFIN

(OPTIONAL) ADD PROCS HERE
ADD SOURCE ELEMENTS HERE
(OPTIONAL) SAVE RESTART FILE

® FAVS RESTART RUN - USES A RESTART FILE

@HDG %% FAVS RESTART RUN **

@ASG,A YOURFILE. ASG FAVS KESTART FILE (FROM PREVIOUS RUN)
@ASG,A DBM*FAVS-DMA. ASG FAVS, TRAN, ANALYZER, TEMPFILES

@USE R. ,DBM*FAVS-DMA.
@ADD,P R.TEMPFILES
@COPY YOURFILE.,2.

ASG TEMPORARY FILES
MAKE TEMPORARY RESTART FILE

@xQT R.FAVS EXECUTE FAVS

RESTART . USE RESTART FILE

LANGUAGE=DMATRAN. . (OPTIONAL)

CPTION=--——-- . . ANY LIST OF VALID OPTIONS (SEC 3.)
FOR MODULES=(LIST OF MODULES). . (OPTIONAL) DEFAULT IS ALL MODULES
@FIN

‘eg"-"

B e SN —— : " e i i o T S N A R B S A VP W S AR AT

® FAVS INSTRUMENT, EXECUTE, AND ANALYZE RUN

@HDG *% FAVS INSTRUMENT, EXECUTE, AND ANALYZE RUN #**
@ASG,A YOURSOURCE. . YOUR FORTRAN OR DMATRAN SOURCE
@QUSE Y. ,YOURSOURCE. .
@ASG,CP YOURFILE,F40///400 . (OPTIONAL) CATALOG FAVS RESTART FILE
@ASG,A DBM*FAVS-DMA. . ASG FAVS, TRAN, ANALYZER, TEMPFILES
@QUSE R.,DBM*FAVS-DMA. .
@ADD,P R.TEMPFILES . ASG TEMPORARY FILES
@xQT R.FAVS . EXECUTE FAVS
LANGUAGE=DMATRAN. . (OPTIONAL)
OPTION=INSTRUMENT, -=—-- . . ANY LIST OF VALID OPTIONS (SEC 3.)
FOR MODULES=(LIST OF MODULES). . (OPTIONAL) DEFAULT IS ALL MODULES
@EOF . SEPARATES FAVS COMMANDS FROM YOUR SOURCE
@ADD,P Y.PROCS . (OPTIONAL) ADD PROCS HERE
@ADD,P Y.ELEMENTS . ADD SOURCE ELEMENTS HERE
@COPY 2.,YOURFILE . (OPTIONAL) SAVE RESTART FILE
@XQT R.TRAN . (OPTIONAL) REQUIRED WHEN LANGAUGE=DMATRAN
@ADD,P 9. . YOUR INSTRUMENTED SOURCE IS ON 9.
@MAP . MAP FOR YOUR PROGRAM
@XQT . EXECUTE YOUR INSTRUMENTED PROGRAM
(YOUR DATA)
@xqQT R.ANALYZER . EXECUTE COVERAGE ANALYZER
FOR MODULES=(LIST OF INSTRUMENTED ELEMENTS).
OPTION======- S . ANY LIST OF VALID OPTIONS (SEC. 6)
@FIN

° FAVS RESTRUCTURE RUN

@HDG *k FAVS RESTRUCTURE RUN **
@ASC,A TOURSOURCE. . YOUR FORTRAN SOURCE
@USE Y. ,YOURSOURCE. A
@ASG,CP YOURFILE,F40///400 . (OPTIONAL) CATALOG FAVS RESTART FILE
@ASG,A DBM*FAVS-DMA. . ASG FAVS. TRAN, ANALYZER, TEMPFILES
@USE R. ,DBM*FAVS-~DMA. ‘
@ADD,P R.TEMPFILES . ASG TEMPORARY FILES
@xQT R.FAVS . EXECUTE FAVS
OPTION=RESTRUCTURE. .
@EOF . SEPARATES FAVS COMMANDS FROM YOUR SOURCE
CADD,P Y.PROCS . (OPTIONAL) ADD PROCS HERE
@ADD,P Y.ELEMENTS . ADD SOURCE ELEMENTS HERE
@OoPY 2.,YOURFILE . (OPTIONAL) SAVE RESTART FILE .
@xqr R.TRAN . EXECUTE DMATRAN PRECOMPILER
@ADD,P 9. . RESTRUCTURED SOURCE IS ON 9.
E-3

S

T v e T e wr————
i b5 S : T R T T o

T

®
@HDG %%k
@QASG,A
Quse
@ASG,A
@QASG,A
@QUSE
@ADD, P
@COPY
@xqr
EXPAND.
LANGUAGE=DMATRAN.
OPTION=~——cee i

FOR MODULES=(LIST OF MODULES).
@QEOF

@ADD,P Y.PROCS

@ADD,P Y.ELEMENTS

@COoPY 2.,YOURFILE

@FIN

YOURSOURCE.

Y. ,YOURSOURCE.
YOURFILE.
DBM*FAVS-DMA.,

R. ,DBMXFAVS-DMA.
R.TEMPFILES
YOURFILE.,2.
R.FAVS

. FAVS STATIC RUN

@HDG L
@ASG,A
QUSE
@ASG,A
QASG,A
QUSE
@ADD, P
@COPY
@xQT
EXPAND
LANGUAGE=DMATRAN.
OPTION=STATIC,-—~-=- .

FOR MODULES=(LIST OF MODULES).
@EOF

@ADD,P Y.PROCS

@ADD,P Y.ELEMENTS

@FIN

YOURSOURCE.
Y., YOURSOURCE.
DBM*FAVS-STUBS.
DBM*FAVS-DMA.

R. ,DBM*FAVS-DMA.
R.TEPFILES
DBM*FAVS-STUBS. , 2.
R.FAVS

e © o o © e & e ° & e e e ° o e

i nu-;-n-u---ﬁ-n--d-Iﬁ-ih-I-hh-hﬁ---u-nununnunnnn--nL_

FAVS EXPAND RUN - EXPANDS A RESTART FILE

FAVS EXPAND RUN **
YOUR FORTRAN OR DMATRAN SOURCE

ASG FAVS RESTART FILE (FROM PREVIOUS RUN)
ASG FAVS, TRAN, ANALYZER, TEMPFILES

ASG TEMPORARY FILES

MAKE TEMPORARY RESTART FILE

EXECUTE FAVS

EXPAND RESTART FILE WITH NEW SOURCE ELEMENTS
(OPTIONAL)

ANY LIST OF VALID OPTIONS (SEC 3.)
(OPTIONAL) DEFAULT IS ALL MODULES
SEPARATES FAVS COMMANDS FROM YOUR SOURCE
(OPTIONAL) ADD PROCS HERE

ADD SOURCE ELEMENTS HERE

(OPTIONAL) SAVE EXPANDED RESTART FILE

FAVS STATIC RUN **
YOUR FORTRAN OR DMATRAN SOURCE

ASG RESTART FILE DESCRIBING FORTRAN SYSLIB
ASG FAVS, TRAN, ANALYZER, TEMPFILES

ASG TEMPORARY FILES
MAKE TEMPORARY RESTART FILE

EXECUTE FAVS

EXPAND RESTART FILE WITH NEW SOURCE ELEMENTS
(OPTIONAL)

ANY LIST OF VALID OPTIONS (SEC 3.)
(OPTIONAL) DEFAULT IS ALL MODULES

SEPARATES FAVS COMMANDS FROM YOUR SOURCE
(OPTIONAL) ADD PROCS HERE

ADD SOURCE ELEMENTS HERE

E-4

|

< |
? '3;'.'"‘.:,9‘;):;5"". BL o S "‘7"&"’&“ }é

—

RADC HONEYWELL 6180/MULTICS
(USING THE GCOS ENCAPSULATOR)

The job stream in Fig. E.1l can be used for executing any of the FAVS
options: LIST, SUMMARY, DOCUMENT, STATIC, INSTRUMENT, INPUT/OUTPUT,
REACHING SET.

Sl il L it it o0 e Bl e Lal S b

e $ snumb

2. ident
3. program rlhs
4, limits (CP time limit),52k,,(print line limit)

$
$
$
5. $ prmfl h*,r,r,>udd>3201c0320>Urban>favs>hstar

6. $ select >udd>3201c0320>Urban>favs>filedefs -ascii
7. $ prmfl 09,r,s,>udd>(BCD source code)

8. $ prmfl 07,w,s,>udd>(BCD instrumented source code) g
9. option=inst,list,summ,docu,stat,inpu. ;
10. § endjob

Figure E.1. Sample FAVS Job Stream

Notes

1. if a large amount of source code is to be analyzed, insert the
following file card to increase the random data base file size from
10R:

$ file 01,2z2r,(size in links)r

2. The BCD source code (control card 7) must be standard, card-image |
FORTRAN (not MULTICS FORTRAN).

3. If no instrumentation or restructuring is to be performed, delete

control card 8.

4, The above job stream can also be used for restructuring, using the
FAVS command

option = rest.

File 07 will contain the output DMATRAN source code.

E-5

e AT AR Ty ¥) .,JM
i " g AL

USSP P T

5. If the data base library is to be saved for a subsequent ''restart"
run (e.g., for obtaining reaching set information), the following
permanent file card must be inserted after control card 6, 7 or 8: |

$. prmfl 01,r/w,r,>udd>(data base file)

When the restart activity is to be performed, precede the FAVS
option command with:

restart

and insert the above permanent file card after control card 6, 7

or 8.

The instrumented source file contains the FAVS data collection
routine. The instrumented source code should be compiled and executed in
the same manner as uninstrumented source code with the following exception:
the trace file (file code 12) must be available during execution. If the
execution coverage analysis is to be performed in a separate job, the trace
file must be saved on a magnetic tape or on permanent disk space. If the
| coverage analysis is an additional activity of the execution job, a
temporary file can be used.

e.8., $ file 12,x28, (size in links)l

or $ prmfl 12,w,s,>udd>(trace file)

The job stream in Fig. E.2 can be used for obtaining execution coverage
analysis if the trace data file was saved on permanent disk space during
execution of the instrumented code.

o

et TRy £y ,“ . .
TR IR AR | Ba L, |

] .
o

|
|
|

) $ snumb (number)

2. $ ident

3. $ program rlhs |

4, $ limits (CP time limit),30k,,(print line limit) 1

5. $ prmfl H*,r,r,xudd>3201c03205>Urban>analyzer>hstar |

6. $ prmfl 12,r,s,>udd>(execution trace file) |
|

7. for modules = (namel,...,namen)
8. . option = summary, nothit, detailed
9. $ endjob

Figure E.2. Sample Coverage Analysis Job Stream

In the event that unusually large programs are to be processed, it
may be required, due to resource limitations, to build a data base on

permanent storage media by running several successive executions, each

operating on a separate file of modules. The job stream in Fig. E.3,

utilizing FAVS segment commands, can be used for this purpose.

T $ snumb (number)
2. $ ident
3. $ program rlhs
4. $ limits (CP time limit),52k,, (print line limit)
5. $ prmfl h*,r,r, >udd>3201c0320>Urban>favs>hstar
6. $ select >udd>3201c0320>Urban>favs>filedefs -ascii
7. $ prmfl 09,r,s,>udd>(BCD source code)
8. $ prmfl 0l1,r/w,r,>udd>(data base file)
9. EXPAND.
F 10. OPTION=LIST.

11. § endjob

Figure E.3. Incremental Data Base Creation

When the data base is completed (all BCD source code files have been
g processed), it may be utilized for nprmal FAVS processing. For each subse-
quent FAVS job, the "RESTART" capability must be used. The BCD source
file (09) is no longer required.

E-7

AT SR AT a o SR g R e T TR SIS 0N IR R

" ¥, e o -
o SRR AR L Y A AR S s LTl
¥ v.":-:. v(Ly ' “‘ =}

RADC HONEYWELL 6180/GCOS

The job stream in Fig. E.4 can be used for executing any of the
following FAVS options: LISY, SUMMARY, DOCUMENT, STATIC, INSTRUMENT,
INPUT/OUTPUT, REACHING SET.

1. $ IDENT
2. $, SELECT BFCBGRC4/FAVS/EXECUTE |
3. $ PRMFL 09,R,S, (SOURCE)-
4, $ PRMFL 07,W,S, (INSTRUMENTED SOURCE)

[

$

FAVS COMMANDS/OPTIONS]

5. ENDJOB

Lant b e

Figure E.4. Sample FAVS Job Stream

b b

NOTES

1. - If a large amount of source code is to be analyzed, insert the
following file card to increase the random data base file size
from 10R:

$ FILE 01,Z2R, (SIZE IN LINKS)R
2. The BCD source code (File 09) must be standard card-image FORTRAN.
3. If no instrumentation is to be performed, delete File 07.

4. If restructuring is to be performed, use the FAVS command OPTION =
‘RESTRUCTURE. It must be performed independent of any other option.
File 07 will contain the output structured source code.

5. If the data base library is to be saved for a subsequent '"RESTART"
run (e.g., for obtaining reaching set information, for instance),
the following permanent file card must be inserted after the
$ SELECT CARD:

$ PRMFL 01,R/W,R, (DATA BASE FILE)

When the restart activity is to be performed, precede the FAVS option
command with:

RESTART

Following instrumentation, the instrumented source file (File 07)
contains the FAVS data collection routine in addition to the instrumented
FORTRAN/DMATRAN source code. The instrumented source code should be
compiled and executed in the same manner as uninstrumented source code
with the following exception: the trace file (File 12) must be available
during execution. (Also note that if the instrumented source code is
DMATRAN, it must be processed by the DMATRAN pre-compiler before being
compiled and executed (see DMATRAN User's Guide, General Research Corp-
oration CR-1-673/1.

If the execution coverage analysis is to be performed in a separate
job, the trace file must be saved on a magnetic tape or on permanent disk
space. If the coverage analysis is an additional activity of the execution

job, a temporary file can be used.

$ PRMFL 12,W,S, (TRACE FILE)
or
$ FILE 12,X2S, (SIZE IN LINKS)L

{
i
{
|
1
i

The job stream in Fig. E.5 can be used for obtaining execution coverage
analysis (OPTIONS SUMMARY, NOTHIT, DETAILED), if the trace file was saved

on permanent disk space during execution of the instrumented code.

1. $ IDENT
2 $ SELECT BFCBGRC4 /ANALYZER/EXECUTE
3. $ PRMFL 12,R,S, (TRACE FILE)
[FAVS ANALYZER COMMANDS/OPTIONS]
4, $ ENDJOB

Figure E.5. Sample Coverage Analysis Job Stream

E-9

EREERTS Al R S ; G R L e A BT T i e RN SR SIS TINSD. 3
* bt ¥ :

NoOUnpswWwNh =
.

In the event that unusually large programs are to be processed, it

may be required, due to resource limitations, to build a data base on
permanent media by running several successive executions, each operating
on a separate file of modules. The job stream in Fig. E.6, utilizing FAVS

standard commands, can be used for this purpose.

$ IDENT

$ SELECT BFCBGRC4 /FAVS/EXECUTE

$ PRMFL 01,R/W,R, (DATA BASE FILE)
$ PRMFL 09,R,S, (BCD Source File)
EXPAND.

OPTION=LIST.

$ ENDJOB

Figure E.6. Incremental Data Base Creation

When the data base is completed (all BCD source code files have been
processed), it may be utilized for normal FAVS processing. For each
subsequent FAVS job, the '"RESTART" capability must be used. The BCD

source file (09) is no longer required.

INDEX

ANALYZER commands
ASSIST,REACHING SET command

BASIC command

BUILD,DMT command
BUILD,PREDICATE command
BUILD,PARMETER command
BUILD,CROSS command

CALL checking

CODE, preparation of
For FAVS analysis reports
For FAVS instrumentation
For FAVS restructuring

Coverage Analysis

Coverage Analysis Reports

Data Collection
DD-paths

DD-paths, definition

DETAILED option

DMATRAN language command

DMATRAN precompiler

DOCUMENT option

DOCUMENT , BANDS command
DOCUMENT , COMMONS , PRINT=FULL command
DOCUMENT , COMMONS , PRINT=PART command
DOCUMENT , COMMONS , PRINT=SUMMARY command
DOCUMENT , CROSSREF command
DOCUMENT , INVOKES command

6-1 to 6-11, C-4
A=3, A~6, A-D, Be? to B=3

A-3, A-6, A-9, B-4
A-3, A-6, A-8, A-9, B-5
A-3, A-6, A-8, A-9, B-6
A-3, A-6, A-9, B-7
A-3, A-6, A-9, B-8

4-16, 5-19

81, 6
32, 3-3, 04

3-3, 4-28 to 4-29, C-4
6-1 to 6-11

2-2, 6-3

4-21, 6-1

4-21 to 4-23, 4-26, 6-1 tc
6-11, B-2

4=2%

6-3, 6-9 to 6-11

3-2, 3«3

4-21, 4-28 to 4-30, E-9

3-2, 3-4, 4-10 to 4-15

A-3, A-6, A-8, A-9, B-9

A-3, A-6, 3-10

A-3, A-6, A-9, B-11

A-3, A-6, A-9, B-12

A3, A~6, A-9, B-13

A-3, A-6, A-8, A-9, B-14

sankbon s e i o i e . il

TR WAL o
3 "-#’d‘. » tﬁ." A o :ﬁ,, £
ek RPN 0 G SN

R

INDEX (Cont'd.)

DOCUMENT ,MATRIX,LIBRARY command
DOCUMENT , READS command
Documentation

Dynamic testing

END command

END FOR command

Error detection
execution
semantic

Execution tests

EXPAND command

FAVS capabilities
FILENAME command
Files

DMA

RADC
FOR ALL MODULES command
FOR MODULES command

Graph analysis

Implementation, software

Input variables

INPUT/OUTPUT option

INSTRUMENT command

INSTRUMENT option

INSTRUMENT, IOPROBE=ON command
INSTRUMENT , PUNCH,PROBE command
INSTRUMENT ,TESTBOUND command

Instrumentation

Integration

A=3,
A-3,
B
1-1

A-3,
A-2,

4-20
4-16
1-1,
32,

1-1,
3-2,

D-2
D-3
A-2,
3-2,

4-16

1-1
4-24
3-2,
A-3,
3-2,
B-26
B-25
A-2,
3-3,
4-2

A-6, A-9, B-15
A-6, A-9, B-16
4-2, 4-10 to 4-15

A-6, B-17 to B-19
B-20

to 4-23, 6-1 to 6-11
to 4-19

4-21, 6-1 to 6-11
3-3, C-2

1=2
S=fy Ao, Ae%, P21, C-2

A-6, B-20, B-22
3-5, 6-3, 6-9, A-2, B-20,
B=23, ©-2, C-4

to 4-25

3-4, 4-24 to 4-25
B-24

3-4, 4-20 to 4-23

A-5, B-27
4-20 to 4-23

A -

RS Ao,

Salia' vt i v e i S0 ol

;I
|
|

i

Interface data

Job Streams

DMA
RADC

LANGUAGE command

LIST option

Maintenance

Mismatched

Argument Parameter lists
Data types
Variables

MODULE command
Multi-module reports

NEW LIBRARY command
NOTHIT option

OLD LIBRARY command
OPTION(S) command

DETAILED
DOCUMENT

LIST
INPUT/OUTPUT
INSTRUMENT
NOTHIT
REACHING SET
RESTRUCTURE
STATIC
SUMMARY (FAVS)
SUMMARY (Coverage Analysis)

INDEX (Cont'd.)

4-2

E-2 to E-4

E-5 t

3-2,
3-2,

4-2

4-16
4-16
4-16
A2,
4-5

A=2,
6-3,

6-3,
Ju2y
32,
3-2,
3=2,
6-3,
3-2,
3-2,
32,
32,
6-3,

B

o E-10

3-3, A-2, A-4, B-28, C-2
3-4, 4=3, 4-b4

A-5, B-29

A-4, B-30
6-7 to 6-8

A-4, B-31

6-9 to 6-11

3-4, 4-10 to 4-15, C-2
3-4, 4=3, C-2

3-4, 4=24 to 4-25, C-2
3-4, 4-20 to 4-23, C-2
6-7 to 6-8

3-4, 4-26 to 4-27, C-2
3-5, 4-28 to 4-32, C-2
3-4, 4-16 to 4-19, C-2
3-4, 4-5 to 4~9, C-2
6-4 to 6-6

N ki

PO AT R
GRE - SR L AR

S — ——— S e e ———

INDEX (Cont'd.)

Output variables 4-24 to 4-25
PRINT,DDPATHS command A-3, A-6, A-8, B-32
PRINT ,MODULE command A-3, A-6, A-8, B-33
PRINT,PROFILE command A-3, A-6, A-8, B-34
Ranges of variables 4-2
REACHING SET option 3-2, 3-4, 4-26 to 4-27, C-3
REACHING SET specification command 4-26
RESTART command 3-2, 3-3, C-2 }
RESTART file 3-1 1
RESTRUCTURE option 3-2, 3-5, 4-28 to 4-32 |
R/W LIBRARY command A-2, A-4
SEGMENT command A-2, A-4, B-35

j Semantic errors 4-16 to 4-19

s SET/USE Checking 4-16, 4-19 §

START command A-2, A-4, B-36
STATIC option 3-2, 3-4, 4-16 to 4-19, A-8 1
STRUCTURAL command A-3, B-37
STRUCTURAL , COMPUTE=FULL command A-2, A-5, B-38
STRUCTURAL,JUNCTION-ON command . A-2, A-5, B-39
SUMMARY options (FAVS) 3-2, 3-4, 4-5 to 4-9
SUMMARY options (Coverage Analysis) 6-3, 6-4 to 6-6

i

F TESTBOUND command 3-2, A-2, C-3

: Test coverage 4-2, 6-1 to 6-11

} Unknown behavior 4-2

E Unreachable statements 4-2

;’*

i

i

; I-4 <

3 .
oty 2 T D 4 - o T T
% VAR L ARG L B,
R T KA Y

FAVS COMMANDS

[REST[ART].]

[EXPA[ND].]

[FILE,PUNC[H]=<file number>.]
[LANG[UAGE]=DMAT[RAN].]

{ OPTI[ONS]= option {, option}.}

where option is one of:

DOCU [MENT]
INPU[T/OUTPUT]
INST [RUMENT]
LIST
REAC[HING SET]
REST [RUCTURE]
STAT[IC]
SUMM[ARY]

{FOR M[ODULES] = (<name> {, <name>}).}

{TEST[BOUND] ,MODU[LE]=(<name>) , STAT [EMENT]=<number>. }
{REAC[HING SET],MODU[LE]=(name),

, TO=<DD-path number> [, FROM=<DD-path number>]

| [,ITER[ATIVE]].}

ANALYZER COMMANDS

{0PTI[ONS]=option {5 option}.}

where option is one of:

DETAILED
NOTHIT
SUMMARY

{FOR M[ODULES]=(<name> {, <name>}).}

[1 = optional
{ } = optional an arbitrary number of times

< > = integer constant or character string

FC-1

T A T P OB U I i

:
. iy A o
3 -] T e W RS £ vds b+
o R G
3 Ty W K

S Sibnii

MISSION
of
Rome Awr Develo;mwnt Center

RADC plans and conducts research, exploratory and ndvmaod
development programs in command, control, and communications
(c3) activities, and in the ¢3 areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

%

S s A A

e

g N i

U
e

b

ey C
-

Ve vow—

ut ;
ieo* '°~ 4
"n m‘j : ‘
|
LA R A T B RS AR ’ "‘
. " —— _—

